Spaces:
Running
on
Zero
Running
on
Zero
File size: 4,458 Bytes
5e673fa f9854a2 5e673fa c7c8e9e 5e673fa c7c8e9e 5e673fa c7c8e9e 5e673fa 58e0bd4 5e673fa c7c8e9e 5e673fa 9975067 5e673fa 9975067 5e673fa 5b6d50e 284fff8 5b6d50e 284fff8 5e673fa c7c8e9e b9cc117 5e673fa 2b10f87 3e6b373 2b10f87 5e673fa 58e0bd4 5e673fa 5aebc40 5e673fa 5b6d50e 5e673fa c7c8e9e 5e673fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 |
import gradio as gr
import spaces
import numpy as np
import random
import spaces
import torch
from diffusers import SanaSprintPipeline
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
pipe = SanaSprintPipeline.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_0.6B_1024px_diffusers",
torch_dtype=torch.bfloat16
)
pipe2 = SanaSprintPipeline.from_pretrained(
"Efficient-Large-Model/Sana_Sprint_1.6B_1024px_diffusers",
torch_dtype=torch.bfloat16
)
pipe.to(device)
pipe2.to(device)
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 1024
@spaces.GPU(duration=5)
def infer(prompt, model_size, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=4.5, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator().manual_seed(seed)
# Choose the appropriate model based on selected model size
selected_pipe = pipe if model_size == "0.6B" else pipe2
img = selected_pipe(
prompt=prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
width=width,
height=height,
generator=generator,
output_type="pil"
)
print(img)
return img.images[0], seed
examples = [
["a tiny astronaut hatching from an egg on the moon", "1.6B"],
["๐ถ Wearing ๐ถ flying on the ๐", "1.6B"],
["an anime illustration of a wiener schnitzel", "0.6B"],
["a photorealistic landscape of mountains at sunset", "0.6B"],
]
css="""
#col-container {
margin: 0 auto;
max-width: 520px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# Sana Sprint""")
gr.Markdown("Demo for the real-time [Sana Sprint](https://huggingface.co/collections/Efficient-Large-Model/sana-sprint-67d6810d65235085b3b17c76) model")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0)
result = gr.Image(label="Result", show_label=False)
model_size = gr.Radio(
label="Model Size",
choices=["0.6B", "1.6B"],
value="1.6B",
interactive=True
)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
height = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=1024,
)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=15,
step=0.1,
value=4.5,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=2,
)
gr.Examples(
examples = examples,
fn = infer,
inputs = [prompt, model_size], # Add model_size to inputs
outputs = [result, seed],
cache_examples="lazy"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn = infer,
inputs = [prompt, model_size, seed, randomize_seed, width, height, guidance_scale, num_inference_steps], # Add model_size to inputs
outputs = [result, seed]
)
demo.launch() |