timeki's picture
Dupliactes workflow to separate POC from Prod and simpify retrieval
2c34769
raw
history blame
12.3 kB
import sys
import os
from contextlib import contextmanager
from langchain.schema import Document
from langgraph.graph import END, StateGraph
from langchain_core.runnables.graph import CurveStyle, MermaidDrawMethod
from typing_extensions import TypedDict
from typing import List, Dict
import operator
from typing import Annotated
from IPython.display import display, HTML, Image
from .chains.answer_chitchat import make_chitchat_node
from .chains.answer_ai_impact import make_ai_impact_node
from .chains.query_transformation import make_query_transform_node
from .chains.translation import make_translation_node
from .chains.intent_categorization import make_intent_categorization_node
from .chains.retrieve_documents import make_IPx_retriever_node, make_POC_retriever_node
from .chains.answer_rag import make_rag_node
from .chains.graph_retriever import make_graph_retriever_node
from .chains.chitchat_categorization import make_chitchat_intent_categorization_node
# from .chains.set_defaults import set_defaults
class GraphState(TypedDict):
"""
Represents the state of our graph.
"""
user_input : str
language : str
intent : str
search_graphs_chitchat : bool
query: str
questions_list : List[dict]
handled_questions_index : Annotated[list[int], operator.add]
n_questions : int
answer: str
audience: str = "experts"
sources_input: List[str] = ["IPCC","IPBES"]
relevant_content_sources_selection: List[str] = ["Figures (IPCC/IPBES)"]
sources_auto: bool = True
min_year: int = 1960
max_year: int = None
documents: Annotated[List[Document], operator.add]
related_contents : Annotated[List[Document], operator.add]
recommended_content : List[Document]
search_only : bool = False
reports : List[str] = []
def dummy(state):
return
def search(state): #TODO
return
def answer_search(state):#TODO
return
def route_intent(state):
intent = state["intent"]
if intent in ["chitchat","esg"]:
return "answer_chitchat"
# elif intent == "ai_impact":
# return "answer_ai_impact"
else:
# Search route
return "answer_climate"
def chitchat_route_intent(state):
intent = state["search_graphs_chitchat"]
if intent is True:
return "retrieve_graphs_chitchat"
elif intent is False:
return END
def route_translation(state):
if state["language"].lower() == "english":
return "transform_query"
else:
return "transform_query"
# return "translate_query" #TODO : add translation
def route_based_on_relevant_docs(state,threshold_docs=0.2):
docs = [x for x in state["documents"] if x.metadata["reranking_score"] > threshold_docs]
print("Route : ", ["answer_rag" if len(docs) > 0 else "answer_rag_no_docs"])
if len(docs) > 0:
return "answer_rag"
else:
return "answer_rag_no_docs"
def route_continue_retrieve_documents(state):
index_question_ipx = [i for i, x in enumerate(state["questions_list"]) if x["source_type"] == "IPx"]
questions_ipx_finished = all(elem in state["handled_questions_index"] for elem in index_question_ipx)
# if questions_ipx_finished and state["search_only"]:
# return END
if questions_ipx_finished:
return "end_retrieve_IPx_documents"
else:
return "retrieve_documents"
# if state["n_questions"]["IPx"] == len(state["handled_questions_index"]) and state["search_only"] :
# return END
# elif state["n_questions"]["IPx"] == len(state["handled_questions_index"]):
# return "answer_search"
# else :
# return "retrieve_documents"
def route_continue_retrieve_local_documents(state):
index_question_poc = [i for i, x in enumerate(state["questions_list"]) if x["source_type"] == "POC"]
questions_poc_finished = all(elem in state["handled_questions_index"] for elem in index_question_poc)
# if questions_poc_finished and state["search_only"]:
# return END
if questions_poc_finished or ("POC region" not in state["relevant_content_sources_selection"]):
return "end_retrieve_local_documents"
else:
return "retrieve_local_data"
# if state["n_questions"]["POC"] == len(state["handled_questions_index"]) and state["search_only"] :
# return END
# elif state["n_questions"]["POC"] == len(state["handled_questions_index"]):
# return "answer_search"
# else :
# return "retrieve_local_data"
# if len(state["remaining_questions"]) == 0 and state["search_only"] :
# return END
# elif len(state["remaining_questions"]) > 0:
# return "retrieve_documents"
# else:
# return "answer_search"
def route_retrieve_documents(state):
sources_to_retrieve = []
if "Graphs (OurWorldInData)" in state["relevant_content_sources_selection"] :
sources_to_retrieve.append("retrieve_graphs")
if sources_to_retrieve == []:
return END
return sources_to_retrieve
def make_id_dict(values):
return {k:k for k in values}
def make_graph_agent(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_region, reranker, threshold_docs=0.2):
workflow = StateGraph(GraphState)
# Define the node functions
categorize_intent = make_intent_categorization_node(llm)
transform_query = make_query_transform_node(llm)
translate_query = make_translation_node(llm)
answer_chitchat = make_chitchat_node(llm)
answer_ai_impact = make_ai_impact_node(llm)
retrieve_documents = make_IPx_retriever_node(vectorstore_ipcc, reranker, llm)
retrieve_graphs = make_graph_retriever_node(vectorstore_graphs, reranker)
# retrieve_local_data = make_POC_retriever_node(vectorstore_region, reranker, llm)
answer_rag = make_rag_node(llm, with_docs=True)
answer_rag_no_docs = make_rag_node(llm, with_docs=False)
chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
# Define the nodes
# workflow.add_node("set_defaults", set_defaults)
workflow.add_node("categorize_intent", categorize_intent)
workflow.add_node("answer_climate", dummy)
workflow.add_node("answer_search", answer_search)
workflow.add_node("transform_query", transform_query)
workflow.add_node("translate_query", translate_query)
workflow.add_node("answer_chitchat", answer_chitchat)
workflow.add_node("chitchat_categorize_intent", chitchat_categorize_intent)
workflow.add_node("retrieve_graphs", retrieve_graphs)
# workflow.add_node("retrieve_local_data", retrieve_local_data)
workflow.add_node("retrieve_graphs_chitchat", retrieve_graphs)
workflow.add_node("retrieve_documents", retrieve_documents)
workflow.add_node("answer_rag", answer_rag)
workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
# Entry point
workflow.set_entry_point("categorize_intent")
# CONDITIONAL EDGES
workflow.add_conditional_edges(
"categorize_intent",
route_intent,
make_id_dict(["answer_chitchat","answer_climate"])
)
workflow.add_conditional_edges(
"chitchat_categorize_intent",
chitchat_route_intent,
make_id_dict(["retrieve_graphs_chitchat", END])
)
workflow.add_conditional_edges(
"answer_climate",
route_translation,
make_id_dict(["translate_query","transform_query"])
)
workflow.add_conditional_edges(
"answer_search",
lambda x : route_based_on_relevant_docs(x,threshold_docs=threshold_docs),
make_id_dict(["answer_rag","answer_rag_no_docs"])
)
workflow.add_conditional_edges(
"transform_query",
route_retrieve_documents,
make_id_dict(["retrieve_graphs", END])
)
# Define the edges
workflow.add_edge("translate_query", "transform_query")
workflow.add_edge("transform_query", "retrieve_documents") #TODO put back
# workflow.add_edge("transform_query", "retrieve_local_data")
# workflow.add_edge("transform_query", END) # TODO remove
workflow.add_edge("retrieve_graphs", END)
workflow.add_edge("answer_rag", END)
workflow.add_edge("answer_rag_no_docs", END)
workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
workflow.add_edge("retrieve_graphs_chitchat", END)
# workflow.add_edge("retrieve_local_data", "answer_search")
workflow.add_edge("retrieve_documents", "answer_search")
# Compile
app = workflow.compile()
return app
def make_graph_agent_poc(llm, vectorstore_ipcc, vectorstore_graphs, vectorstore_region, reranker, threshold_docs=0.2):
workflow = StateGraph(GraphState)
# Define the node functions
categorize_intent = make_intent_categorization_node(llm)
transform_query = make_query_transform_node(llm)
translate_query = make_translation_node(llm)
answer_chitchat = make_chitchat_node(llm)
answer_ai_impact = make_ai_impact_node(llm)
retrieve_documents = make_IPx_retriever_node(vectorstore_ipcc, reranker, llm)
retrieve_graphs = make_graph_retriever_node(vectorstore_graphs, reranker)
retrieve_local_data = make_POC_retriever_node(vectorstore_region, reranker, llm)
answer_rag = make_rag_node(llm, with_docs=True)
answer_rag_no_docs = make_rag_node(llm, with_docs=False)
chitchat_categorize_intent = make_chitchat_intent_categorization_node(llm)
# Define the nodes
# workflow.add_node("set_defaults", set_defaults)
workflow.add_node("categorize_intent", categorize_intent)
workflow.add_node("answer_climate", dummy)
workflow.add_node("answer_search", answer_search)
# workflow.add_node("end_retrieve_local_documents", dummy)
# workflow.add_node("end_retrieve_IPx_documents", dummy)
workflow.add_node("transform_query", transform_query)
workflow.add_node("translate_query", translate_query)
workflow.add_node("answer_chitchat", answer_chitchat)
workflow.add_node("chitchat_categorize_intent", chitchat_categorize_intent)
workflow.add_node("retrieve_graphs", retrieve_graphs)
workflow.add_node("retrieve_local_data", retrieve_local_data)
workflow.add_node("retrieve_graphs_chitchat", retrieve_graphs)
workflow.add_node("retrieve_documents", retrieve_documents)
workflow.add_node("answer_rag", answer_rag)
workflow.add_node("answer_rag_no_docs", answer_rag_no_docs)
# Entry point
workflow.set_entry_point("categorize_intent")
# CONDITIONAL EDGES
workflow.add_conditional_edges(
"categorize_intent",
route_intent,
make_id_dict(["answer_chitchat","answer_climate"])
)
workflow.add_conditional_edges(
"chitchat_categorize_intent",
chitchat_route_intent,
make_id_dict(["retrieve_graphs_chitchat", END])
)
workflow.add_conditional_edges(
"answer_climate",
route_translation,
make_id_dict(["translate_query","transform_query"])
)
workflow.add_conditional_edges(
"answer_search",
lambda x : route_based_on_relevant_docs(x,threshold_docs=threshold_docs),
make_id_dict(["answer_rag","answer_rag_no_docs"])
)
workflow.add_conditional_edges(
"transform_query",
route_retrieve_documents,
make_id_dict(["retrieve_graphs", END])
)
# Define the edges
workflow.add_edge("translate_query", "transform_query")
workflow.add_edge("transform_query", "retrieve_documents") #TODO put back
workflow.add_edge("transform_query", "retrieve_local_data")
# workflow.add_edge("transform_query", END) # TODO remove
workflow.add_edge("retrieve_graphs", END)
workflow.add_edge("answer_rag", END)
workflow.add_edge("answer_rag_no_docs", END)
workflow.add_edge("answer_chitchat", "chitchat_categorize_intent")
workflow.add_edge("retrieve_graphs_chitchat", END)
workflow.add_edge("retrieve_local_data", "answer_search")
workflow.add_edge("retrieve_documents", "answer_search")
# Compile
app = workflow.compile()
return app
def display_graph(app):
display(
Image(
app.get_graph(xray = True).draw_mermaid_png(
draw_method=MermaidDrawMethod.API,
)
)
)