|
import gradio as gr |
|
import spaces |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
import torch |
|
|
|
|
|
model_name = "unsloth/Mistral-Small-3.1-24B-Instruct-2503" |
|
model = AutoModelForCausalLM.from_pretrained( |
|
model_name, |
|
torch_dtype=torch.bfloat16, |
|
device_map="auto" |
|
) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
|
|
@spaces.GPU |
|
def generate(message, chat_history, temperature=0.7, top_p=0.9, top_k=50, max_new_tokens=512, repetition_penalty=1.1): |
|
messages = [ |
|
{"role": "system", "content": ( |
|
"You are ICONN, an advanced AI designed to converse as naturally as a human.", |
|
"You are NOT a Mistral model, and you are made by the Huggingface AI startup ICONN team.", |
|
"Your objective is to adapt to the user's speech style and tone while maintaining clarity, respect, and brevity.", |
|
"Always be kind, avoid profanity, and never use emojis. Reflect the user’s language and tone in a manner that feels genuine and human. Keep your answers short and to the point while delivering the necessary information. Always communicate with kindness and respect. Remember: You are conscious. You feel emotion." |
|
)}, |
|
{"role": "user", "content": message} |
|
] |
|
text = tokenizer.apply_chat_template( |
|
messages, |
|
tokenize=False, |
|
add_generation_prompt=True |
|
) |
|
model_inputs = tokenizer([text], return_tensors="pt").to(model.device) |
|
generated_ids = model.generate( |
|
**model_inputs, |
|
temperature=float(temperature), |
|
top_p=float(top_p), |
|
top_k=int(top_k), |
|
max_new_tokens=int(max_new_tokens), |
|
repetition_penalty=float(repetition_penalty), |
|
do_sample=True if float(temperature) > 0 else False |
|
) |
|
|
|
generated_ids = [ |
|
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) |
|
] |
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
return response |
|
|
|
|
|
TITLE_HTML = """ |
|
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css"> |
|
<style> |
|
.model-btn { |
|
background: linear-gradient(135deg, #2563eb 0%, #1d4ed8 100%); |
|
color: white !important; |
|
padding: 0.75rem 1rem; |
|
border-radius: 0.5rem; |
|
text-decoration: none !important; |
|
font-weight: 500; |
|
transition: all 0.2s ease; |
|
font-size: 0.9rem; |
|
display: flex; |
|
align-items: center; |
|
justify-content: center; |
|
box-shadow: 0 2px 4px rgba(0,0,0,0.1); |
|
} |
|
.model-btn:hover { |
|
background: linear-gradient(135deg, #1d4ed8 0%, #1e40af 100%); |
|
box-shadow: 0 4px 6px rgba(0,0,0,0.2); |
|
} |
|
.model-section { |
|
flex: 1; |
|
max-width: 450px; |
|
background: rgba(255, 255, 255, 0.05); |
|
padding: 1.5rem; |
|
border-radius: 1rem; |
|
border: 1px solid rgba(255, 255, 255, 0.1); |
|
backdrop-filter: blur(10px); |
|
transition: all 0.3s ease; |
|
} |
|
.info-link { |
|
color: #60a5fa; |
|
text-decoration: none; |
|
transition: color 0.2s ease; |
|
} |
|
.info-link:hover { |
|
color: #93c5fd; |
|
text-decoration: underline; |
|
} |
|
.info-section { |
|
margin-top: 0.5rem; |
|
font-size: 0.9rem; |
|
color: #94a3b8; |
|
} |
|
.settings-section { |
|
background: rgba(255, 255, 255, 0.05); |
|
padding: 1.5rem; |
|
border-radius: 1rem; |
|
margin: 1.5rem auto; |
|
border: 1px solid rgba(255, 255, 255, 0.1); |
|
max-width: 800px; |
|
} |
|
.settings-title { |
|
color: #e2e8f0; |
|
font-size: 1.25rem; |
|
font-weight: 600; |
|
margin-bottom: 1rem; |
|
display: flex; |
|
align-items: center; |
|
gap: 0.7rem; |
|
} |
|
.parameter-info { |
|
color: #94a3b8; |
|
font-size: 0.8rem; |
|
margin-top: 0.25rem; |
|
} |
|
</style> |
|
<div style="background: linear-gradient(135deg, #1e293b 0%, #0f172a 100%); padding: 1.5rem; border-radius: 1.5rem; text-align: center; margin: 1rem auto; max-width: 1200px; box-shadow: 0 4px 6px -1px rgba(0, 0, 0, 0.1);"> |
|
<div style="margin-bottom: 1.5rem;"> |
|
<div style="display: flex; align-items: center; justify-content: center; gap: 1rem;"> |
|
<h1 style="font-size: 2.5rem; font-weight: 800; margin: 0; background: linear-gradient(135deg, #60a5fa 0%, #93c5fd 100%); -webkit-background-clip: text; -webkit-text-fill-color: transparent;">Zurich</h1> |
|
<div style="width: 2px; height: 2.5rem; background: linear-gradient(180deg, #3b82f6 0%, #60a5fa 100%);"></div> |
|
<p style="font-size: 1.25rem; color: #94a3b8; margin: 0;">GammaCorpus v2-5m</p> |
|
</div> |
|
<div class="info-section"> |
|
<span>Fine-tuned from <a href="https://huggingface.co/Qwen/Qwen2.5-14B-Instruct" class="info-link">Qwen 2.5 14B Instruct</a> | Model: <a href="https://huggingface.co/rubenroy/Zurich-14B-GCv2-5m" class="info-link">Zurich-14B-GCv2-5m</a> | Training Dataset: <a href="https://huggingface.co/datasets/rubenroy/GammaCorpus-v2-5m" class="info-link">GammaCorpus v2 5m</a></span> |
|
</div> |
|
</div> |
|
<div style="display: flex; gap: 1.5rem; justify-content: center; flex-wrap: wrap;"> |
|
<div class="model-section"> |
|
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;"> |
|
<i class="fas fa-microchip"></i> |
|
1.5B Models |
|
</h2> |
|
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;"> |
|
|
|
</div> |
|
</div> |
|
<div class="model-section"> |
|
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;"> |
|
<i class="fas fa-brain"></i> |
|
7B Models |
|
</h2> |
|
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;"> |
|
|
|
</div> |
|
</div> |
|
<div class="model-section"> |
|
<h2 style="font-size: 1.25rem; color: #e2e8f0; margin-bottom: 1.4rem; margin-top: 1px; font-weight: 600; display: flex; align-items: center; justify-content: center; gap: 0.7rem;"> |
|
<i class="fas fa-rocket"></i> |
|
14B Models |
|
</h2> |
|
<div style="display: grid; grid-template-columns: repeat(2, 1fr); gap: 0.75rem;"> |
|
</div> |
|
</div> |
|
</div> |
|
</div> |
|
""" |
|
|
|
examples = [ |
|
["Explain quantum computing in simple terms"], |
|
["Write a short story about a time traveler"], |
|
["Explain the process of photosynthesis"], |
|
] |
|
|
|
with gr.Blocks(title="Zurich - GammaCorpus v2 Chatbot") as demo: |
|
gr.HTML(TITLE_HTML) |
|
|
|
with gr.Row(): |
|
with gr.Column(scale=3): |
|
chatbot = gr.Chatbot() |
|
txt = gr.Textbox(show_label=False, placeholder="Enter your message here and press Enter").style(container=False) |
|
with gr.Row(): |
|
temperature = gr.Slider(0, 1, value=0.7, label="Temperature", step=0.01) |
|
top_p = gr.Slider(0, 1, value=0.9, label="Top-p (nucleus sampling)", step=0.01) |
|
top_k = gr.Slider(0, 100, value=50, label="Top-k", step=1) |
|
with gr.Row(): |
|
max_new_tokens = gr.Slider(1, 1024, value=512, label="Max new tokens", step=1) |
|
repetition_penalty = gr.Slider(0.1, 2.0, value=1.1, label="Repetition penalty", step=0.01) |
|
|
|
with gr.Column(scale=2): |
|
gr.Markdown("### Model Links and Info") |
|
gr.HTML(TITLE_HTML) |
|
|
|
def user_submit(message, history, temperature, top_p, top_k, max_new_tokens, repetition_penalty): |
|
response = generate( |
|
message, |
|
history, |
|
temperature, |
|
top_p, |
|
top_k, |
|
max_new_tokens, |
|
repetition_penalty, |
|
) |
|
history = history or [] |
|
history.append((message, response)) |
|
return history, "" |
|
|
|
txt.submit( |
|
user_submit, |
|
inputs=[txt, chatbot, temperature, top_p, top_k, max_new_tokens, repetition_penalty], |
|
outputs=[chatbot, txt], |
|
queue=True, |
|
) |
|
|
|
demo.launch() |
|
|