SoundingStreet / main.py
FQiao's picture
Upload 70 files
3324de2 verified
raw
history blame
8.01 kB
import os
import argparse
from PIL import Image
import numpy as np
import torch
import torchaudio
import gc
from config import LOGS_DIR, OUTPUT_DIR
from DepthEstimator import DepthEstimator
from SoundMapper import SoundMapper
from GenerateAudio import GenerateAudio
from GenerateCaptions import generate_caption
from audio_mixer import compose_audio
def main():
parser = argparse.ArgumentParser(description="Generate sound from panoramic images")
parser.add_argument("--image_dir", type=str, default=LOGS_DIR, help="Directory containing input images")
parser.add_argument("--output_dir", type=str, default=OUTPUT_DIR, help="Directory for output files")
parser.add_argument("--audio_duration", type=int, default=10, help="Duration of generated audio in seconds")
parser.add_argument("--location", type=str, default="52.3436723,4.8529625", help='Location in format "latitude,longitude" (e.g., "40.7128,-74.0060")')
parser.add_argument("--view", type=str, default="front", choices=["front", "back", "left", "right"], help="Perspective view to analyze")
parser.add_argument("--model", type=str, default="intern_2_5-4B", help="Vision-language model to use for analysis")
parser.add_argument("--cpu_only", action="store_true", help="Force CPU usage even if CUDA is available")
parser.add_argument("--panoramic", action="store_true", default=False,
help="Process panoramic images instead of a single image")
args = parser.parse_args()
lat, lon = args.location.split(",")
os.makedirs(args.output_dir, exist_ok=True)
if args.panoramic:
print("-----------Processing panoramic images-----------")
# Generate captions for all views at once with panoramic=True
view_results = generate_caption(lat, lon, view=args.view, model=args.model,
cpu_only=args.cpu_only, panoramic=True)
if not view_results:
print("Failed to generate captions for panoramic views")
return
sound_mapper = SoundMapper()
processed_maps = sound_mapper.process_depth_maps()
image_paths = [os.path.join(args.image_dir, f) for f in os.listdir(args.image_dir) if f.endswith(".jpg")]
# Create audio generator
audio_generator = GenerateAudio()
sound_tracks_dict = {} # keep track of sound tracks and their weight
# Process each view
for i, view_result in enumerate(view_results):
current_view = view_result["view"]
print(f"Processing {current_view} view ({i+1}/{len(view_results)})")
# Find corresponding image path for this view
image_path = os.path.join(args.image_dir, f"{current_view}.jpg")
if not os.path.exists(image_path):
print(f"Warning: Image file {image_path} not found")
continue
image_index = [idx for idx, path in enumerate(image_paths)
if os.path.basename(path) == f"{current_view}.jpg"]
if not image_index:
print(f"Could not find processed map for {current_view} view")
continue
depth_map = processed_maps[image_index[0]]["normalization"]
object_depths = sound_mapper.analyze_object_depths(
image_path, depth_map, lat, lon,
caption_data=view_result,
all_objects=False
)
if not object_depths:
print(f"No objects detected in the {current_view} view")
continue
# Generate audio for this view
output_path = os.path.join(args.output_dir, f"sound_{current_view}.wav")
print(f"Generating audio for {current_view} view...")
audio, sample_rate = audio_generator.process_and_generate_audio(
object_depths,
duration=args.audio_duration
)
if audio.dim() == 3:
audio = audio.squeeze(0)
elif audio.dim() == 1:
audio = audio.unsqueeze(0)
if audio.dim() != 2:
raise ValueError(f"Could not convert audio tensor of shape {audio.shape} to 2D")
torchaudio.save(
output_path,
audio,
sample_rate
)
if object_depths:
sound_tracks_dict[output_path] = object_depths[0]['weight']
print(f"Generated audio saved to: {output_path}")
print("-" * 50)
if sound_tracks_dict:
print("Composing final audio from all views...")
compose_audio(
list(sound_tracks_dict.keys()),
list(sound_tracks_dict.values()),
os.path.join(args.output_dir, "panoramic_composition.wav")
)
print(f"Final audio composition saved to: {os.path.join(args.output_dir, 'panoramic_composition.wav')}")
torch.cuda.empty_cache()
gc.collect()
del sound_mapper, audio_generator
gc.collect()
torch.cuda.empty_cache()
else:
print("Processing single image...")
view_result = generate_caption(lat, lon, view=args.view, model=args.model,
cpu_only=args.cpu_only, panoramic=False)
if not view_result:
print("Failed to generate caption for the view")
return
image_path = os.path.join(args.image_dir, f"{args.view}.jpg")
if not os.path.exists(image_path):
print(f"Error: Image file {image_path} not found")
return
print(f"Processing image: {image_path}")
sound_mapper = SoundMapper()
processed_maps = sound_mapper.process_depth_maps()
image_paths = [os.path.join(args.image_dir, f) for f in os.listdir(args.image_dir) if f.endswith(".jpg")]
image_basename = os.path.basename(image_path)
image_index = [i for i, path in enumerate(image_paths) if os.path.basename(path) == image_basename]
if not image_index:
print(f"Could not find processed map for {image_basename}")
return
depth_map = processed_maps[image_index[0]]["normalization"]
print("Detecting objects and their depths...")
object_depths = sound_mapper.analyze_object_depths(
image_path, depth_map, lat, lon,
caption_data=view_result,
all_objects=True
)
if not object_depths:
print("No objects detected in the image.")
return
print(f"Detected {len(object_depths)} objects:")
for obj in object_depths:
print(f" - {obj['original_label']} (Zone: {obj['zone_description']}, Depth: {obj['mean_depth']:.4f})")
print("Generating audio...")
audio_generator = GenerateAudio()
audio, sample_rate = audio_generator.process_and_generate_audio(
object_depths,
duration=args.audio_duration
)
if audio.dim() == 3:
audio = audio.squeeze(0)
elif audio.dim() == 1:
audio = audio.unsqueeze(0)
if audio.dim() != 2:
raise ValueError(f"Could not convert audio tensor of shape {audio.shape} to 2D")
output_path = os.path.join(args.output_dir, f"sound_{args.view}.wav")
torchaudio.save(
output_path,
audio,
sample_rate
)
print(f"Generated audio saved to: {output_path}")
if __name__ == "__main__":
main()
# Usage:
#(For single image): python main.py --view front
#(For panoramic images): python main.py --panoramic