#!/usr/bin/env python3 """ streetsoundtext.py - A pipeline that downloads Google Street View panoramas, extracts perspective views, and analyzes them for sound information. """ import os import requests import argparse import numpy as np import torch import time from PIL import Image from io import BytesIO from config import LOGS_DIR import torchvision.transforms as T from torchvision.transforms.functional import InterpolationMode from transformers import AutoModel, AutoTokenizer from utils import sample_perspective_img import cv2 log_dir = LOGS_DIR os.makedirs(log_dir, exist_ok=True) # Creates the directory if it doesn't exist # soundscape_query = "\nWhat can we expect to hear from the location captured in this image? Name the around five nouns. Avoid speculation and provide a concise response including sound sources visible in the image." soundscape_query = """ Identify 5 potential sound sources visible in this image. For each source, provide both the noun and a brief description of its typical sound. Format your response exactly like these examples (do not include the word "Noun:" in your response): Car: engine humming with occasional honking. River: gentle flowing water with subtle splashing sounds. Trees: rustling leaves moved by the wind. """ # Constants IMAGENET_MEAN = (0.485, 0.456, 0.406) IMAGENET_STD = (0.229, 0.224, 0.225) # Model Leaderboard Paths MODEL_LEADERBOARD = { "intern_2_5-8B": "OpenGVLab/InternVL2_5-8B-MPO", "intern_2_5-4B": "OpenGVLab/InternVL2_5-4B-MPO", } class StreetViewDownloader: """Downloads panoramic images from Google Street View""" def __init__(self): # URLs for API requests # https://www.google.ca/maps/rpc/photo/listentityphotos?authuser=0&hl=en&gl=us&pb=!1e3!5m45!2m2!1i203!2i100!3m3!2i4!3sCAEIBAgFCAYgAQ!5b1!7m33!1m3!1e1!2b0!3e3!1m3!1e2!2b1!3e2!1m3!1e2!2b0!3e3!1m3!1e8!2b0!3e3!1m3!1e10!2b0!3e3!1m3!1e10!2b1!3e2!1m3!1e10!2b0!3e4!1m3!1e9!2b1!3e2!2b1!8m0!9b0!11m1!4b1!6m3!1sI63QZ8b4BcSli-gPvPHf-Qc!7e81!15i11021!9m2!2d-90.30324219145255!3d38.636242944711036!10d91.37627840655999 #self.panoid_req = 'https://www.google.com/maps/preview/reveal?authuser=0&hl=en&gl=us&pb=!2m9!1m3!1d82597.14038230096!2d{}!3d{}!2m0!3m2!1i1523!2i1272!4f13.1!3m2!2d{}!3d{}!4m2!1syPETZOjwLvCIptQPiJum-AQ!7e81!5m5!2m4!1i96!2i64!3i1!4i8' self.panoid_req = 'https://www.google.ca/maps/rpc/photo/listentityphotos?authuser=0&hl=en&gl=us&pb=!1e3!5m45!2m2!1i203!2i100!3m3!2i4!3sCAEIBAgFCAYgAQ!5b1!7m33!1m3!1e1!2b0!3e3!1m3!1e2!2b1!3e2!1m3!1e2!2b0!3e3!1m3!1e8!2b0!3e3!1m3!1e10!2b0!3e3!1m3!1e10!2b1!3e2!1m3!1e10!2b0!3e4!1m3!1e9!2b1!3e2!2b1!8m0!9b0!11m1!4b1!6m3!1sI63QZ8b4BcSli-gPvPHf-Qc!7e81!15i11021!9m2!2d{}!3d{}!10d25' # https://www.google.com/maps/photometa/v1?authuser=0&hl=en&gl=us&pb=!1m4!1smaps_sv.tactile!11m2!2m1!1b1!2m2!1sen!2sus!3m3!1m2!1e2!2s{}!4m61!1e1!1e2!1e3!1e4!1e5!1e6!1e8!1e12!1e17!2m1!1e1!4m1!1i48!5m1!1e1!5m1!1e2!6m1!1e1!6m1!1e2!9m36!1m3!1e2!2b1!3e2!1m3!1e2!2b0!3e3!1m3!1e3!2b1!3e2!1m3!1e3!2b0!3e3!1m3!1e8!2b0!3e3!1m3!1e1!2b0!3e3!1m3!1e4!2b0!3e3!1m3!1e10!2b1!3e2!1m3!1e10!2b0!3e3!11m2!3m1!4b1 # vmSzE7zkK2eETwAP_r8UdQ # https://www.google.ca/maps/photometa/v1?authuser=0&hl=en&gl=us&pb=!1m4!1smaps_sv.tactile!11m2!2m1!1b1!2m2!1sen!2sus!3m3!1m2!1e2!2s{}!4m61!1e1!1e2!1e3!1e4!1e5!1e6!1e8!1e12!1e17!2m1!1e1!4m1!1i48!5m1!1e1!5m1!1e2!6m1!1e1!6m1!1e2!9m36!1m3!1e2!2b1!3e2!1m3!1e2!2b0!3e3!1m3!1e3!2b1!3e2!1m3!1e3!2b0!3e3!1m3!1e8!2b0!3e3!1m3!1e1!2b0!3e3!1m3!1e4!2b0!3e3!1m3!1e10!2b1!3e2!1m3!1e10!2b0!3e3!11m2!3m1!4b1 # -9HfuNFUDOw_IP5SA5IspA self.photometa_req = 'https://www.google.com/maps/photometa/v1?authuser=0&hl=en&gl=us&pb=!1m4!1smaps_sv.tactile!11m2!2m1!1b1!2m2!1sen!2sus!3m5!1m2!1e2!2s{}!2m1!5s0x87d8b49f53fc92e9:0x6ecb6e520c6f4d9f!4m57!1e1!1e2!1e3!1e4!1e5!1e6!1e8!1e12!2m1!1e1!4m1!1i48!5m1!1e1!5m1!1e2!6m1!1e1!6m1!1e2!9m36!1m3!1e2!2b1!3e2!1m3!1e2!2b0!3e3!1m3!1e3!2b1!3e2!1m3!1e3!2b0!3e3!1m3!1e8!2b0!3e3!1m3!1e1!2b0!3e3!1m3!1e4!2b0!3e3!1m3!1e10!2b1!3e2!1m3!1e10!2b0!3e3' self.panimg_req = 'https://streetviewpixels-pa.googleapis.com/v1/tile?cb_client=maps_sv.tactile&panoid={}&x={}&y={}&zoom={}' def get_image_id(self, lat, lon): """Get Street View panorama ID for given coordinates""" null = None pr_response = requests.get(self.panoid_req.format(lon, lat, lon, lat)) if pr_response.status_code != 200: error_message = f"Error fetching panorama ID: HTTP {pr_response.status_code}" if pr_response.status_code == 400: error_message += " - Bad request. Check coordinates format." elif pr_response.status_code == 401 or pr_response.status_code == 403: error_message += " - Authentication error. Check API key and permissions." elif pr_response.status_code == 404: error_message += " - No panorama found at these coordinates." elif pr_response.status_code == 429: error_message += " - Rate limit exceeded. Try again later." elif pr_response.status_code >= 500: error_message += " - Server error. Try again later." return None pr = BytesIO(pr_response.content).getvalue().decode('utf-8') pr = eval(pr[pr.index('\n'):]) try: panoid = pr[0][0][0] except: return None return panoid def download_image(self, lat, lon, zoom=1): """Download Street View panorama and metadata""" null = None panoid = self.get_image_id(lat, lon) if panoid is None: raise ValueError(f"get_image_id failed() at coordinates: {lat}, {lon}") # Get metadata pm_response = requests.get(self.photometa_req.format(panoid)) pm = BytesIO(pm_response.content).getvalue().decode('utf-8') pm = eval(pm[pm.index('\n'):]) pan_list = pm[1][0][5][0][3][0] # Extract relevant info pid = pan_list[0][0][1] plat = pan_list[0][2][0][2] plon = pan_list[0][2][0][3] p_orient = pan_list[0][2][2][0] # Download image tiles and assemble panorama img_part_inds = [(x, y) for x in range(2**zoom) for y in range(2**(zoom-1))] img = np.zeros((512*(2**(zoom-1)), 512*(2**zoom), 3), dtype=np.uint8) for x, y in img_part_inds: sub_img_response = requests.get(self.panimg_req.format(pid, x, y, zoom)) sub_img = np.array(Image.open(BytesIO(sub_img_response.content))) img[512*y:512*(y+1), 512*x:512*(x+1)] = sub_img if (img[-1] == 0).all(): # raise ValueError("Failed to download complete panorama") print("Failed to download complete panorama") return img, pid, plat, plon, p_orient class PerspectiveExtractor: """Extracts perspective views from panoramic images""" def __init__(self, output_shape=(256, 256), fov=(90, 90)): self.output_shape = output_shape self.fov = fov def extract_views(self, pano_img, face_size=512): """Extract front, back, left, and right views based on orientation""" # orientations = { # "front": (0, p_orient, 0), # Align front with real orientation # "back": (0, p_orient + 180, 0), # Behind # "left": (0, p_orient - 90, 0), # Left side # "right": (0, p_orient + 90, 0), # Right side # } # cutouts = {} # for view, rot in orientations.items(): # cutout, fov, applied_rot = sample_perspective_img( # pano_img, self.output_shape, fov=self.fov, rot=rot # ) # cutouts[view] = cutout # return cutouts """ Convert ERP panorama to four cubic faces: Front, Left, Back, Right. Args: erp_img (numpy.ndarray): The input equirectangular image. face_size (int): The size of each cubic face. Returns: dict: A dictionary with the four cube faces. """ # Get ERP dimensions h_erp, w_erp, _ = pano_img.shape # Define cube face directions (yaw, pitch, roll) cube_faces = { "front": (0, 0), "left": (90, 0), "back": (180, 0), "right": (-90, 0), } # Output faces faces = {} # Generate each face for face_name, (yaw, pitch) in cube_faces.items(): # Create a perspective transformation matrix fov = 90 # Field of view K = np.array([ [face_size / (2 * np.tan(np.radians(fov / 2))), 0, face_size / 2], [0, face_size / (2 * np.tan(np.radians(fov / 2))), face_size / 2], [0, 0, 1] ]) # Generate 3D world coordinates for the cube face x, y = np.meshgrid(np.linspace(-1, 1, face_size), np.linspace(-1, 1, face_size)) z = np.ones_like(x) # Normalize 3D points points_3d = np.stack((x, y, z), axis=-1) # Shape: (H, W, 3) points_3d /= np.linalg.norm(points_3d, axis=-1, keepdims=True) # Apply rotation to align with the cube face yaw_rad, pitch_rad = np.radians(yaw), np.radians(pitch) Ry = np.array([[np.cos(yaw_rad), 0, np.sin(yaw_rad)], [0, 1, 0], [-np.sin(yaw_rad), 0, np.cos(yaw_rad)]]) Rx = np.array([[1, 0, 0], [0, np.cos(pitch_rad), -np.sin(pitch_rad)], [0, np.sin(pitch_rad), np.cos(pitch_rad)]]) R = Ry @ Rx # Rotate points points_3d_rot = np.einsum('ij,hwj->hwi', R, points_3d) # Convert 3D to spherical coordinates lon = np.arctan2(points_3d_rot[..., 0], points_3d_rot[..., 2]) lat = np.arcsin(points_3d_rot[..., 1]) # Map spherical coordinates to ERP image coordinates x_erp = (w_erp * (lon / (2 * np.pi) + 0.5)).astype(np.float32) y_erp = (h_erp * (0.5 - lat / np.pi)).astype(np.float32) # Sample pixels from ERP image face_img = cv2.remap(pano_img, x_erp, y_erp, interpolation=cv2.INTER_LINEAR, borderMode=cv2.BORDER_WRAP) cv2.rotate(face_img, cv2.ROTATE_180, face_img) faces[face_name] = face_img return faces class ImageAnalyzer: """Analyzes images using Vision-Language Models""" def __init__(self, model_name="intern_2_5-4B", use_cuda=True): self.model_name = model_name self.use_cuda = use_cuda and torch.cuda.is_available() self.model, self.tokenizer, self.device = self._load_model() def _load_model(self): """Load selected Vision-Language Model""" if self.model_name not in MODEL_LEADERBOARD: raise ValueError(f"Model '{self.model_name}' not found. Choose from: {list(MODEL_LEADERBOARD.keys())}") model_path = MODEL_LEADERBOARD[self.model_name] # Configure device and parameters if self.use_cuda: device = torch.device("cuda") torch_dtype = torch.bfloat16 use_flash_attn = True else: device = torch.device("cpu") torch_dtype = torch.float32 use_flash_attn = False # Load model and tokenizer model = AutoModel.from_pretrained( model_path, torch_dtype=torch_dtype, load_in_8bit=False, low_cpu_mem_usage=True, use_flash_attn=use_flash_attn, trust_remote_code=True, ).eval().to(device) tokenizer = AutoTokenizer.from_pretrained( model_path, trust_remote_code=True, use_fast=False ) return model, tokenizer, device def _build_transform(self, input_size=448): """Create image transformation pipeline""" transform = T.Compose([ T.Lambda(lambda img: img.convert('RGB') if img.mode != 'RGB' else img), T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), T.ToTensor(), T.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD) ]) return transform def _find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): """Find closest aspect ratio for image tiling""" best_ratio_diff = float('inf') best_ratio = (1, 1) area = width * height for ratio in target_ratios: target_aspect_ratio = ratio[0] / ratio[1] ratio_diff = abs(aspect_ratio - target_aspect_ratio) if ratio_diff < best_ratio_diff: best_ratio_diff = ratio_diff best_ratio = ratio elif ratio_diff == best_ratio_diff: if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: best_ratio = ratio return best_ratio def _preprocess_image(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): """Preprocess image for model input""" orig_width, orig_height = image.size aspect_ratio = orig_width / orig_height # Calculate possible image aspect ratios target_ratios = set( (i, j) for n in range(min_num, max_num + 1) for i in range(1, n + 1) for j in range(1, n + 1) if i * j <= max_num and i * j >= min_num ) target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) # Find closest aspect ratio target_aspect_ratio = self._find_closest_aspect_ratio( aspect_ratio, target_ratios, orig_width, orig_height, image_size ) # Calculate target dimensions target_width = image_size * target_aspect_ratio[0] target_height = image_size * target_aspect_ratio[1] blocks = target_aspect_ratio[0] * target_aspect_ratio[1] # Resize and split image resized_img = image.resize((target_width, target_height)) processed_images = [] for i in range(blocks): box = ( (i % (target_width // image_size)) * image_size, (i // (target_width // image_size)) * image_size, ((i % (target_width // image_size)) + 1) * image_size, ((i // (target_width // image_size)) + 1) * image_size ) split_img = resized_img.crop(box) processed_images.append(split_img) assert len(processed_images) == blocks if use_thumbnail and len(processed_images) != 1: thumbnail_img = image.resize((image_size, image_size)) processed_images.append(thumbnail_img) return processed_images def load_image(self, image_path, input_size=448, max_num=12): """Load and process image for analysis""" image = Image.open(image_path).convert('RGB') transform = self._build_transform(input_size) images = self._preprocess_image(image, image_size=input_size, use_thumbnail=True, max_num=max_num) pixel_values = [transform(image) for image in images] pixel_values = torch.stack(pixel_values) return pixel_values def analyze_image(self, image_path, max_num=12): """Analyze image for expected sounds""" # Load and process image pixel_values = self.load_image(image_path, max_num=max_num) # Move to device with appropriate dtype if self.device.type == "cuda": pixel_values = pixel_values.to(torch.bfloat16).to(self.device) else: pixel_values = pixel_values.to(torch.float32).to(self.device) # Create sound-focused query query = soundscape_query # Generate response generation_config = dict(max_new_tokens=1024, do_sample=True) response = self.model.chat(self.tokenizer, pixel_values, query, generation_config) return response class StreetSoundTextPipeline: """Complete pipeline for Street View sound analysis""" def __init__(self, log_dir="logs", model_name="intern_2_5-4B", use_cuda=True): # Create log directory if it doesn't exist self.log_dir = log_dir os.makedirs(log_dir, exist_ok=True) # Initialize components self.downloader = StreetViewDownloader() self.extractor = PerspectiveExtractor() # self.analyzer = ImageAnalyzer(model_name=model_name, use_cuda=use_cuda) self.analyzer = None self.model_name = model_name self.use_cuda = use_cuda def _load_analyzer(self): if self.analyzer is None: self.analyzer = ImageAnalyzer(model_name=self.model_name, use_cuda=self.use_cuda) def _unload_analyzer(self): if self.analyzer is not None: if hasattr(self.analyzer, 'model') and self.analyzer.model is not None: self.analyzer.model = self.analyzer.model.to("cpu") del self.analyzer.model self.analyzer.model = None torch.cuda.empty_cache() self.analyzer = None def process(self, lat, lon, view, panoramic=False): """ Process a location to generate sound description for specified view or all views Args: lat (float): Latitude lon (float): Longitude view (str): Perspective view ('front', 'back', 'left', 'right') panoramic (bool): If True, process all views instead of just the specified one Returns: dict or list: Results including panorama info and sound description(s) """ if view not in ["front", "back", "left", "right"]: raise ValueError(f"Invalid view: {view}. Choose from: front, back, left, right") # Step 1: Download panoramic image print(f"Downloading Street View panorama for coordinates: {lat}, {lon}") pano_path = os.path.join(self.log_dir, "panorama.jpg") pano_img, pid, plat, plon, p_orient = self.downloader.download_image(lat, lon) Image.fromarray(pano_img).save(pano_path) # Step 2: Extract perspective views print(f"Extracting perspective views with orientation: {p_orient}°") cutouts = self.extractor.extract_views(pano_img, 512) # Save all views for v, img in cutouts.items(): view_path = os.path.join(self.log_dir, f"{v}.jpg") Image.fromarray(img).save(view_path) self._load_analyzer() print("\n[DEBUG] Current soundscape query:") print(soundscape_query) print("-" * 50) if panoramic: # Process all views print(f"Analyzing all views for sound information") results = [] for current_view in ["front", "back", "left", "right"]: view_path = os.path.join(self.log_dir, f"{current_view}.jpg") sound_description = self.analyzer.analyze_image(view_path) view_result = { "panorama_id": pid, "coordinates": {"lat": plat, "lon": plon}, "orientation": p_orient, "view": current_view, "sound_description": sound_description, "files": { "panorama": pano_path, "view_path": view_path } } results.append(view_result) self._unload_analyzer() return results else: # Process only the selected view view_path = os.path.join(self.log_dir, f"{view}.jpg") print(f"Analyzing {view} view for sound information") sound_description = self.analyzer.analyze_image(view_path) self._unload_analyzer() # Prepare results results = { "panorama_id": pid, "coordinates": {"lat": plat, "lon": plon}, "orientation": p_orient, "view": view, "sound_description": sound_description, "files": { "panorama": pano_path, "views": {v: os.path.join(self.log_dir, f"{v}.jpg") for v in cutouts.keys()} } } return results def parse_location(location_str): """Parse location string in format 'lat,lon' into float tuple""" try: lat, lon = map(float, location_str.split(',')) return lat, lon except ValueError: raise argparse.ArgumentTypeError("Location must be in format 'latitude,longitude'") def generate_caption(lat, lon, view="front", model="intern_2_5-4B", cpu_only=False, panoramic=False): """ Generate sound captions for one or all views of a street view location Args: lat (float/str): Latitude lon (float/str): Longitude view (str): Perspective view ('front', 'back', 'left', 'right') model (str): Model name to use for analysis cpu_only (bool): Whether to force CPU usage panoramic (bool): If True, process all views instead of just the specified one Returns: dict or list: Results with sound descriptions """ pipeline = StreetSoundTextPipeline( log_dir=log_dir, model_name=model, use_cuda=not cpu_only ) try: results = pipeline.process(lat, lon, view, panoramic=panoramic) if panoramic: # Process results for all views print(f"Generated captions for all views at location: {lat}, {lon}") else: print(f"Generated caption for {view} view at location: {lat}, {lon}") return results except Exception as e: print(f"Error: {str(e)}") return None