Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,313 +1,329 @@
|
|
1 |
import os
|
2 |
-
import
|
|
|
3 |
import json
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
import spaces
|
5 |
-
import logging
|
6 |
import torch
|
|
|
7 |
from PIL import Image
|
8 |
-
import
|
9 |
-
import time
|
10 |
-
from hi_diffusers import HiDreamImagePipeline
|
11 |
-
from hi_diffusers import HiDreamImageTransformer2DModel
|
12 |
-
from hi_diffusers.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
13 |
-
from hi_diffusers.schedulers.flash_flow_match import FlashFlowMatchEulerDiscreteScheduler
|
14 |
-
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
15 |
-
from huggingface_hub import ModelCard
|
16 |
-
|
17 |
-
# Constants
|
18 |
-
MODEL_PREFIX = "HiDream-ai"
|
19 |
-
LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
20 |
-
|
21 |
-
FAST_MODEL_CONFIG = {
|
22 |
-
"path": f"{MODEL_PREFIX}/HiDream-I1-Full",
|
23 |
-
"guidance_scale": 5.0,
|
24 |
-
"num_inference_steps": 50,
|
25 |
-
"shift": 3.0,
|
26 |
-
"scheduler": FlowUniPCMultistepScheduler
|
27 |
-
}
|
28 |
-
|
29 |
-
RESOLUTION_OPTIONS = [
|
30 |
-
"1024 × 1024 (Square)",
|
31 |
-
"768 × 1360 (Portrait)",
|
32 |
-
"1360 × 768 (Landscape)",
|
33 |
-
"880 × 1168 (Portrait)",
|
34 |
-
"1168 × 880 (Landscape)",
|
35 |
-
"1248 × 832 (Landscape)",
|
36 |
-
"832 × 1248 (Portrait)"
|
37 |
-
]
|
38 |
-
|
39 |
-
# Load LoRAs from JSON file (assumed to be compatible with Hi-Dream)
|
40 |
-
with open('loras.json', 'r') as f:
|
41 |
-
loras = json.load(f)
|
42 |
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
#
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
"1360 × 768": (1360, 768),
|
52 |
-
"880 × 1168": (880, 1168),
|
53 |
-
"1168 × 880": (1168, 880),
|
54 |
-
"1248 × 832": (1248, 832),
|
55 |
-
"832 × 1248": (832, 1248)
|
56 |
-
}
|
57 |
-
for key, (h, w) in mapping.items():
|
58 |
-
if key in res_str:
|
59 |
-
return h, w
|
60 |
-
return 1024, 1024 # fallback
|
61 |
|
62 |
-
|
63 |
-
pipe, MODEL_CONFIG = None, None
|
64 |
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
73 |
|
74 |
-
|
75 |
-
LLAMA_MODEL_NAME,
|
76 |
-
use_fast=False
|
77 |
-
)
|
78 |
-
text_encoder = LlamaForCausalLM.from_pretrained(
|
79 |
-
LLAMA_MODEL_NAME,
|
80 |
-
output_hidden_states=True,
|
81 |
-
output_attentions=True,
|
82 |
-
torch_dtype=torch.bfloat16
|
83 |
-
).to(device)
|
84 |
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
|
|
|
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
).to(device, torch.bfloat16)
|
98 |
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
|
|
|
|
109 |
|
110 |
-
|
111 |
-
if
|
112 |
seed = random.randint(0, MAX_SEED)
|
113 |
-
|
114 |
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
guidance_scale=guidance_scale,
|
120 |
-
num_inference_steps=num_inference_steps,
|
121 |
-
num_images_per_prompt=1,
|
122 |
-
generator=generator
|
123 |
-
)
|
124 |
|
125 |
-
|
126 |
-
|
127 |
-
class calculateDuration:
|
128 |
-
def __init__(self, activity_name=""):
|
129 |
-
self.activity_name = activity_name
|
130 |
-
|
131 |
-
def __enter__(self):
|
132 |
-
self.start_time = time.time()
|
133 |
-
return self
|
134 |
-
|
135 |
-
def __exit__(self, exc_type, exc_value, traceback):
|
136 |
-
self.end_time = time.time()
|
137 |
-
self.elapsed_time = self.end_time - self.start_time
|
138 |
-
if self.activity_name:
|
139 |
-
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
|
140 |
-
else:
|
141 |
-
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
|
142 |
|
143 |
-
def update_selection(evt: gr.SelectData, resolution):
|
144 |
-
selected_lora = loras[evt.index]
|
145 |
-
new_placeholder = f"Type a prompt for {selected_lora['title']}"
|
146 |
-
lora_repo = selected_lora["repo"]
|
147 |
-
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
|
148 |
-
if "aspect" in selected_lora:
|
149 |
-
if selected_lora["aspect"] == "portrait":
|
150 |
-
resolution = "768 × 1360 (Portrait)"
|
151 |
-
elif selected_lora["aspect"] == "landscape":
|
152 |
-
resolution = "1360 × 768 (Landscape)"
|
153 |
-
else:
|
154 |
-
resolution = "1024 × 1024 (Square)"
|
155 |
-
return (
|
156 |
-
gr.update(placeholder=new_placeholder),
|
157 |
-
updated_text,
|
158 |
-
evt.index,
|
159 |
-
resolution,
|
160 |
-
)
|
161 |
|
162 |
-
|
163 |
-
global pipe
|
164 |
-
if pipe is None:
|
165 |
-
pipe, _ = load_fast_model()
|
166 |
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
pipe.load_lora_weights(lora_path, weight_name=weight_name, low_cpu_mem_usage=True)
|
173 |
-
trigger_word = selected_lora.get("trigger_word", "")
|
174 |
-
if trigger_word:
|
175 |
-
if "trigger_position" in selected_lora and selected_lora["trigger_position"] == "prepend":
|
176 |
-
prompt = f"{trigger_word} {prompt}"
|
177 |
-
else:
|
178 |
-
prompt = f"{prompt} {trigger_word}"
|
179 |
|
180 |
-
|
181 |
-
seed = random.randint(0, MAX_SEED)
|
182 |
|
183 |
-
|
184 |
-
|
185 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
186 |
|
187 |
-
|
188 |
-
split_link = link.split("/")
|
189 |
-
if len(split_link) != 2:
|
190 |
-
raise Exception("Invalid Hugging Face repository link format.")
|
191 |
-
model_card = ModelCard.load(link)
|
192 |
-
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
|
193 |
-
trigger_word = model_card.data.get("instance_prompt", "")
|
194 |
-
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
|
195 |
-
safetensors_name = None # Simplified; assumes a safetensors file exists
|
196 |
-
return split_link[1], link, safetensors_name, trigger_word, image_url
|
197 |
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
</div>
|
212 |
-
</div>
|
213 |
-
</div>
|
214 |
-
'''
|
215 |
-
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
|
216 |
-
if not existing_item_index:
|
217 |
-
new_item = {
|
218 |
-
"image": image,
|
219 |
-
"title": title,
|
220 |
-
"repo": repo,
|
221 |
-
"weights": path,
|
222 |
-
"trigger_word": trigger_word
|
223 |
-
}
|
224 |
-
existing_item_index = len(loras)
|
225 |
-
loras.append(new_item)
|
226 |
-
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
|
227 |
-
except Exception as e:
|
228 |
-
gr.Warning(f"Invalid LoRA: {str(e)}")
|
229 |
-
return gr.update(visible=True, value=f"Invalid LoRA: {str(e)}"), gr.update(visible=True), gr.update(), "", None, ""
|
230 |
-
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
|
231 |
|
232 |
-
|
233 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
234 |
|
235 |
-
|
236 |
-
|
237 |
-
#
|
238 |
-
|
239 |
-
|
240 |
-
#
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
247 |
|
248 |
-
font = [gr.themes.GoogleFont("Source Sans Pro"), "Arial", "sans-serif"]
|
249 |
-
with gr.Blocks(theme=gr.themes.Soft(font=font), css=css, delete_cache=(60, 60)) as app:
|
250 |
-
title = gr.HTML(
|
251 |
-
"""<h1>Hi-Dream Full LoRA DLC 🤩</h1>""",
|
252 |
-
elem_id="title",
|
253 |
-
)
|
254 |
-
selected_index = gr.State(None)
|
255 |
-
with gr.Row():
|
256 |
-
with gr.Column(scale=3):
|
257 |
-
prompt = gr.Textbox(label="Prompt", lines=1, placeholder="Type a prompt after selecting a LoRA")
|
258 |
-
with gr.Column(scale=1, elem_id="gen_column"):
|
259 |
-
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
|
260 |
-
with gr.Row():
|
261 |
-
with gr.Column():
|
262 |
-
selected_info = gr.Markdown("")
|
263 |
-
gallery = gr.Gallery(
|
264 |
-
[(item["image"], item["title"]) for item in loras],
|
265 |
-
label="LoRA Gallery",
|
266 |
-
allow_preview=False,
|
267 |
-
columns=3,
|
268 |
-
elem_id="gallery",
|
269 |
-
show_share_button=False
|
270 |
-
)
|
271 |
-
with gr.Group():
|
272 |
-
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="linoyts/HiDream-yarn-art-LoRA")
|
273 |
-
gr.Markdown("[Check the list of Hi-Dream LoRAs]", elem_id="lora_list")
|
274 |
-
custom_lora_info = gr.HTML(visible=False)
|
275 |
-
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
|
276 |
-
with gr.Column():
|
277 |
-
result = gr.Image(label="Generated Image")
|
278 |
|
279 |
-
|
280 |
-
with gr.Accordion("Advanced Settings", open=False):
|
281 |
-
cfg_scale = gr.Slider(label="Guidance Scale", minimum=0, maximum=20, step=0.1, value=FAST_MODEL_CONFIG["guidance_scale"])
|
282 |
-
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=FAST_MODEL_CONFIG["num_inference_steps"])
|
283 |
-
resolution = gr.Radio(
|
284 |
-
choices=RESOLUTION_OPTIONS,
|
285 |
-
value=RESOLUTION_OPTIONS[0],
|
286 |
-
label="Resolution"
|
287 |
-
)
|
288 |
-
randomize_seed = gr.Checkbox(True, label="Randomize seed")
|
289 |
-
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
|
290 |
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
-
|
313 |
-
|
|
|
1 |
import os
|
2 |
+
import random
|
3 |
+
import uuid
|
4 |
import json
|
5 |
+
import time
|
6 |
+
import asyncio
|
7 |
+
import re
|
8 |
+
from threading import Thread
|
9 |
+
|
10 |
+
import gradio as gr
|
11 |
import spaces
|
|
|
12 |
import torch
|
13 |
+
import numpy as np
|
14 |
from PIL import Image
|
15 |
+
import cv2
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
from transformers import (
|
18 |
+
AutoProcessor,
|
19 |
+
Gemma3ForConditionalGeneration,
|
20 |
+
Qwen2VLForConditionalGeneration,
|
21 |
+
TextIteratorStreamer,
|
22 |
+
)
|
23 |
+
from transformers.image_utils import load_image
|
24 |
|
25 |
+
# Constants
|
26 |
+
MAX_MAX_NEW_TOKENS = 2048
|
27 |
+
DEFAULT_MAX_NEW_TOKENS = 1024
|
28 |
+
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
|
29 |
+
MAX_SEED = np.iinfo(np.int32).max
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
|
|
32 |
|
33 |
+
# Helper function to return a progress bar HTML snippet.
|
34 |
+
def progress_bar_html(label: str) -> str:
|
35 |
+
return f'''
|
36 |
+
<div style="display: flex; align-items: center;">
|
37 |
+
<span style="margin-right: 10px; font-size: 14px;">{label}</span>
|
38 |
+
<div style="width: 110px; height: 5px; background-color: #F0FFF0; border-radius: 2px; overflow: hidden;">
|
39 |
+
<div style="width: 100%; height: 100%; background-color: #00FF00; animation: loading 1.5s linear infinite;"></div>
|
40 |
+
</div>
|
41 |
+
</div>
|
42 |
+
<style>
|
43 |
+
@keyframes loading {{
|
44 |
+
0% {{ transform: translateX(-100%); }}
|
45 |
+
100% {{ transform: translateX(100%); }}
|
46 |
+
}}
|
47 |
+
</style>
|
48 |
+
'''
|
49 |
|
50 |
+
# Qwen2-VL (for optional image inference)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
MODEL_ID_VL = "prithivMLmods/Qwen2-VL-OCR-2B-Instruct"
|
53 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID_VL, trust_remote_code=True)
|
54 |
+
model_m = Qwen2VLForConditionalGeneration.from_pretrained(
|
55 |
+
MODEL_ID_VL,
|
56 |
+
trust_remote_code=True,
|
57 |
+
torch_dtype=torch.float16
|
58 |
+
).to("cuda").eval()
|
59 |
|
60 |
+
def clean_chat_history(chat_history):
|
61 |
+
cleaned = []
|
62 |
+
for msg in chat_history:
|
63 |
+
if isinstance(msg, dict) and isinstance(msg.get("content"), str):
|
64 |
+
cleaned.append(msg)
|
65 |
+
return cleaned
|
|
|
66 |
|
67 |
+
bad_words = json.loads(os.getenv('BAD_WORDS', "[]"))
|
68 |
+
bad_words_negative = json.loads(os.getenv('BAD_WORDS_NEGATIVE', "[]"))
|
69 |
+
default_negative = os.getenv("default_negative", "")
|
70 |
|
71 |
+
def check_text(prompt, negative=""):
|
72 |
+
for i in bad_words:
|
73 |
+
if i in prompt:
|
74 |
+
return True
|
75 |
+
for i in bad_words_negative:
|
76 |
+
if i in negative:
|
77 |
+
return True
|
78 |
+
return False
|
79 |
|
80 |
+
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
|
81 |
+
if randomize_seed:
|
82 |
seed = random.randint(0, MAX_SEED)
|
83 |
+
return seed
|
84 |
|
85 |
+
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1"
|
86 |
+
MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "2048"))
|
87 |
+
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
|
88 |
+
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
|
|
|
|
|
|
|
|
|
|
|
89 |
|
90 |
+
dtype = torch.float16 if device.type == "cuda" else torch.float32
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
92 |
|
93 |
+
# Gemma3 Model (default for text, image, & video inference)
|
|
|
|
|
|
|
94 |
|
95 |
+
gemma3_model_id = "google/gemma-3-4b-it" #[or] Duplicate the space to use 12b
|
96 |
+
gemma3_model = Gemma3ForConditionalGeneration.from_pretrained(
|
97 |
+
gemma3_model_id, device_map="auto"
|
98 |
+
).eval()
|
99 |
+
gemma3_processor = AutoProcessor.from_pretrained(gemma3_model_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
|
101 |
+
# VIDEO PROCESSING HELPER
|
|
|
102 |
|
103 |
+
def downsample_video(video_path):
|
104 |
+
vidcap = cv2.VideoCapture(video_path)
|
105 |
+
total_frames = int(vidcap.get(cv2.CAP_PROP_FRAME_COUNT))
|
106 |
+
fps = vidcap.get(cv2.CAP_PROP_FPS)
|
107 |
+
frames = []
|
108 |
+
# Sample 10 evenly spaced frames.
|
109 |
+
frame_indices = np.linspace(0, total_frames - 1, 10, dtype=int)
|
110 |
+
for i in frame_indices:
|
111 |
+
vidcap.set(cv2.CAP_PROP_POS_FRAMES, i)
|
112 |
+
success, image = vidcap.read()
|
113 |
+
if success:
|
114 |
+
# Convert from BGR to RGB and then to PIL Image.
|
115 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
116 |
+
pil_image = Image.fromarray(image)
|
117 |
+
timestamp = round(i / fps, 2)
|
118 |
+
frames.append((pil_image, timestamp))
|
119 |
+
vidcap.release()
|
120 |
+
return frames
|
121 |
|
122 |
+
# MAIN GENERATION FUNCTION
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
123 |
|
124 |
+
@spaces.GPU
|
125 |
+
def generate(
|
126 |
+
input_dict: dict,
|
127 |
+
chat_history: list[dict],
|
128 |
+
max_new_tokens: int = DEFAULT_MAX_NEW_TOKENS,
|
129 |
+
temperature: float = 0.6,
|
130 |
+
top_p: float = 0.9,
|
131 |
+
top_k: int = 50,
|
132 |
+
repetition_penalty: float = 1.2,
|
133 |
+
):
|
134 |
+
text = input_dict["text"]
|
135 |
+
files = input_dict.get("files", [])
|
136 |
+
lower_text = text.lower().strip()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
137 |
|
138 |
+
# ----- Qwen2-VL branch (triggered with @qwen2-vl) -----
|
139 |
+
if lower_text.startswith("@qwen2-vl"):
|
140 |
+
prompt_clean = re.sub(r"@qwen2-vl", "", text, flags=re.IGNORECASE).strip().strip('"')
|
141 |
+
if files:
|
142 |
+
images = [load_image(f) for f in files]
|
143 |
+
messages = [{
|
144 |
+
"role": "user",
|
145 |
+
"content": [
|
146 |
+
*[{"type": "image", "image": image} for image in images],
|
147 |
+
{"type": "text", "text": prompt_clean},
|
148 |
+
]
|
149 |
+
}]
|
150 |
+
prompt = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
|
151 |
+
inputs = processor(text=[prompt], images=images, return_tensors="pt", padding=True).to("cuda")
|
152 |
+
else:
|
153 |
+
messages = [
|
154 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
155 |
+
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
|
156 |
+
]
|
157 |
+
inputs = processor.apply_chat_template(
|
158 |
+
messages, add_generation_prompt=True, tokenize=True,
|
159 |
+
return_dict=True, return_tensors="pt"
|
160 |
+
).to("cuda", dtype=torch.float16)
|
161 |
+
streamer = TextIteratorStreamer(processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
162 |
+
generation_kwargs = {
|
163 |
+
**inputs,
|
164 |
+
"streamer": streamer,
|
165 |
+
"max_new_tokens": max_new_tokens,
|
166 |
+
"do_sample": True,
|
167 |
+
"temperature": temperature,
|
168 |
+
"top_p": top_p,
|
169 |
+
"top_k": top_k,
|
170 |
+
"repetition_penalty": repetition_penalty,
|
171 |
+
}
|
172 |
+
thread = Thread(target=model_m.generate, kwargs=generation_kwargs)
|
173 |
+
thread.start()
|
174 |
+
buffer = ""
|
175 |
+
yield progress_bar_html("Processing with Qwen2VL")
|
176 |
+
for new_text in streamer:
|
177 |
+
buffer += new_text
|
178 |
+
buffer = buffer.replace("<|im_end|>", "")
|
179 |
+
time.sleep(0.01)
|
180 |
+
yield buffer
|
181 |
+
return
|
182 |
|
183 |
+
# ----- Default branch: Gemma3 (for text, image, & video inference) -----
|
184 |
+
if files:
|
185 |
+
# Check if any provided file is a video based on extension.
|
186 |
+
video_extensions = (".mp4", ".mov", ".avi", ".mkv", ".webm")
|
187 |
+
if any(str(f).lower().endswith(video_extensions) for f in files):
|
188 |
+
# Video inference branch.
|
189 |
+
prompt_clean = re.sub(r"@video-infer", "", text, flags=re.IGNORECASE).strip().strip('"')
|
190 |
+
video_path = files[0]
|
191 |
+
frames = downsample_video(video_path)
|
192 |
+
messages = [
|
193 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
194 |
+
{"role": "user", "content": [{"type": "text", "text": prompt_clean}]}
|
195 |
+
]
|
196 |
+
# Append each frame (with its timestamp) to the conversation.
|
197 |
+
for frame in frames:
|
198 |
+
image, timestamp = frame
|
199 |
+
image_path = f"video_frame_{uuid.uuid4().hex}.png"
|
200 |
+
image.save(image_path)
|
201 |
+
messages[1]["content"].append({"type": "text", "text": f"Frame {timestamp}:"})
|
202 |
+
messages[1]["content"].append({"type": "image", "url": image_path})
|
203 |
+
inputs = gemma3_processor.apply_chat_template(
|
204 |
+
messages, add_generation_prompt=True, tokenize=True,
|
205 |
+
return_dict=True, return_tensors="pt"
|
206 |
+
).to(gemma3_model.device, dtype=torch.bfloat16)
|
207 |
+
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
208 |
+
generation_kwargs = {
|
209 |
+
**inputs,
|
210 |
+
"streamer": streamer,
|
211 |
+
"max_new_tokens": max_new_tokens,
|
212 |
+
"do_sample": True,
|
213 |
+
"temperature": temperature,
|
214 |
+
"top_p": top_p,
|
215 |
+
"top_k": top_k,
|
216 |
+
"repetition_penalty": repetition_penalty,
|
217 |
+
}
|
218 |
+
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
|
219 |
+
thread.start()
|
220 |
+
buffer = ""
|
221 |
+
yield progress_bar_html("Processing video with Gemma3")
|
222 |
+
for new_text in streamer:
|
223 |
+
buffer += new_text
|
224 |
+
time.sleep(0.01)
|
225 |
+
yield buffer
|
226 |
+
return
|
227 |
+
else:
|
228 |
+
# Image inference branch.
|
229 |
+
prompt_clean = re.sub(r"@gemma3", "", text, flags=re.IGNORECASE).strip().strip('"')
|
230 |
+
images = [load_image(f) for f in files]
|
231 |
+
messages = [{
|
232 |
+
"role": "user",
|
233 |
+
"content": [
|
234 |
+
*[{"type": "image", "image": image} for image in images],
|
235 |
+
{"type": "text", "text": prompt_clean},
|
236 |
+
]
|
237 |
+
}]
|
238 |
+
inputs = gemma3_processor.apply_chat_template(
|
239 |
+
messages, tokenize=True, add_generation_prompt=True,
|
240 |
+
return_dict=True, return_tensors="pt"
|
241 |
+
).to(gemma3_model.device, dtype=torch.bfloat16)
|
242 |
+
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
243 |
+
generation_kwargs = {
|
244 |
+
**inputs,
|
245 |
+
"streamer": streamer,
|
246 |
+
"max_new_tokens": max_new_tokens,
|
247 |
+
"do_sample": True,
|
248 |
+
"temperature": temperature,
|
249 |
+
"top_p": top_p,
|
250 |
+
"top_k": top_k,
|
251 |
+
"repetition_penalty": repetition_penalty,
|
252 |
+
}
|
253 |
+
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
|
254 |
+
thread.start()
|
255 |
+
buffer = ""
|
256 |
+
yield progress_bar_html("Processing with Gemma3")
|
257 |
+
for new_text in streamer:
|
258 |
+
buffer += new_text
|
259 |
+
time.sleep(0.01)
|
260 |
+
yield buffer
|
261 |
+
return
|
262 |
+
else:
|
263 |
+
# Text-only inference branch.
|
264 |
+
messages = [
|
265 |
+
{"role": "system", "content": [{"type": "text", "text": "You are a helpful assistant."}]},
|
266 |
+
{"role": "user", "content": [{"type": "text", "text": text}]}
|
267 |
+
]
|
268 |
+
inputs = gemma3_processor.apply_chat_template(
|
269 |
+
messages, add_generation_prompt=True, tokenize=True,
|
270 |
+
return_dict=True, return_tensors="pt"
|
271 |
+
).to(gemma3_model.device, dtype=torch.bfloat16)
|
272 |
+
streamer = TextIteratorStreamer(gemma3_processor.tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
|
273 |
+
generation_kwargs = {
|
274 |
+
**inputs,
|
275 |
+
"streamer": streamer,
|
276 |
+
"max_new_tokens": max_new_tokens,
|
277 |
+
"do_sample": True,
|
278 |
+
"temperature": temperature,
|
279 |
+
"top_p": top_p,
|
280 |
+
"top_k": top_k,
|
281 |
+
"repetition_penalty": repetition_penalty,
|
282 |
+
}
|
283 |
+
thread = Thread(target=gemma3_model.generate, kwargs=generation_kwargs)
|
284 |
+
thread.start()
|
285 |
+
outputs = []
|
286 |
+
for new_text in streamer:
|
287 |
+
outputs.append(new_text)
|
288 |
+
yield "".join(outputs)
|
289 |
+
final_response = "".join(outputs)
|
290 |
+
yield final_response
|
291 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
292 |
|
293 |
+
# Gradio Interface
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
294 |
|
295 |
+
demo = gr.ChatInterface(
|
296 |
+
fn=generate,
|
297 |
+
additional_inputs=[
|
298 |
+
gr.Slider(label="Max new tokens", minimum=1, maximum=MAX_MAX_NEW_TOKENS, step=1, value=DEFAULT_MAX_NEW_TOKENS),
|
299 |
+
gr.Slider(label="Temperature", minimum=0.1, maximum=4.0, step=0.1, value=0.6),
|
300 |
+
gr.Slider(label="Top-p (nucleus sampling)", minimum=0.05, maximum=1.0, step=0.05, value=0.9),
|
301 |
+
gr.Slider(label="Top-k", minimum=1, maximum=1000, step=1, value=50),
|
302 |
+
gr.Slider(label="Repetition penalty", minimum=1.0, maximum=2.0, step=0.05, value=1.2),
|
303 |
+
],
|
304 |
+
examples=[
|
305 |
+
[{"text": "Create a short story based on the image.","files": ["examples/1111.jpg"]}],
|
306 |
+
[{"text": "Explain the Image", "files": ["examples/3.jpg"]}],
|
307 |
+
[{"text": "Explain the content of the Advertisement", "files": ["examples/videoplayback.mp4"]}],
|
308 |
+
[{"text": "Which movie character is this?", "files": ["examples/9999.jpg"]}],
|
309 |
+
["Explain Critical Temperature of Substance"],
|
310 |
+
[{"text": "@qwen2-vl Transcription of the letter", "files": ["examples/222.png"]}],
|
311 |
+
[{"text": "Explain the content of the video in detail", "files": ["examples/breakfast.mp4"]}],
|
312 |
+
[{"text": "Describe the video", "files": ["examples/Missing.mp4"]}],
|
313 |
+
[{"text": "Explain what is happening in this video ?", "files": ["examples/oreo.mp4"]}],
|
314 |
+
[{"text": "Summarize the events in this video", "files": ["examples/sky.mp4"]}],
|
315 |
+
[{"text": "What is in the video ?", "files": ["examples/redlight.mp4"]}],
|
316 |
+
["Python Program for Array Rotation"],
|
317 |
+
["Explain Critical Temperature of Substance"]
|
318 |
+
],
|
319 |
+
cache_examples=False,
|
320 |
+
type="messages",
|
321 |
+
description="# **Gemma 3 Multimodal** \n`Use @qwen2-vl to switch to Qwen2-VL OCR for image inference and @video-infer for video input`",
|
322 |
+
fill_height=True,
|
323 |
+
textbox=gr.MultimodalTextbox(label="Query Input", file_types=["image", "video"], file_count="multiple", placeholder="Tag with @qwen2-vl for Qwen2-VL inference if needed."),
|
324 |
+
stop_btn="Stop Generation",
|
325 |
+
multimodal=True,
|
326 |
+
)
|
327 |
|
328 |
+
if __name__ == "__main__":
|
329 |
+
demo.queue(max_size=20).launch(share=True)
|