from InstructABSA.utils import T5Generator from instructions import InstructionsHandler # Set Global Values instruct_handler = InstructionsHandler() # Load instruction set 2 for ASPE instruct_handler.load_instruction_set2() print('Mode set to: Individual sample inference') # Create T5 model object model_checkpoint = "./Models/joint_task/kevinscariajoint_tk-instruct-base-def-pos-neg-neut-combined-robs_experiment" t5_exp = T5Generator(model_checkpoint) print("Model loaded from: ", model_checkpoint) bos_instruction_id = instruct_handler.aspe['bos_instruct2'] eos_instruction = instruct_handler.aspe['eos_instruct'] # Get input from user user_input = input("Enter sentence for inference: ") # format and tokenize input model_input = bos_instruction_id + user_input + eos_instruction input_ids = t5_exp.tokenizer(model_input, return_tensors="pt").input_ids # generate output outputs = t5_exp.model.generate(input_ids, max_length=128) # decode output and print print('Model output: ', t5_exp.tokenizer.decode(outputs[0], skip_special_tokens=True))