|
import argparse |
|
import gc |
|
import logging |
|
import numpy as np |
|
import queue |
|
import socket |
|
import struct |
|
import threading |
|
import traceback |
|
import wave |
|
from importlib.resources import files |
|
|
|
import torch |
|
import torchaudio |
|
from huggingface_hub import hf_hub_download |
|
from hydra.utils import get_class |
|
from omegaconf import OmegaConf |
|
|
|
from f5_tts.infer.utils_infer import ( |
|
chunk_text, |
|
preprocess_ref_audio_text, |
|
load_vocoder, |
|
load_model, |
|
infer_batch_process, |
|
) |
|
|
|
logging.basicConfig(level=logging.INFO) |
|
logger = logging.getLogger(__name__) |
|
|
|
|
|
class AudioFileWriterThread(threading.Thread): |
|
"""Threaded file writer to avoid blocking the TTS streaming process.""" |
|
|
|
def __init__(self, output_file, sampling_rate): |
|
super().__init__() |
|
self.output_file = output_file |
|
self.sampling_rate = sampling_rate |
|
self.queue = queue.Queue() |
|
self.stop_event = threading.Event() |
|
self.audio_data = [] |
|
|
|
def run(self): |
|
"""Process queued audio data and write it to a file.""" |
|
logger.info("AudioFileWriterThread started.") |
|
with wave.open(self.output_file, "wb") as wf: |
|
wf.setnchannels(1) |
|
wf.setsampwidth(2) |
|
wf.setframerate(self.sampling_rate) |
|
|
|
while not self.stop_event.is_set() or not self.queue.empty(): |
|
try: |
|
chunk = self.queue.get(timeout=0.1) |
|
if chunk is not None: |
|
chunk = np.int16(chunk * 32767) |
|
self.audio_data.append(chunk) |
|
wf.writeframes(chunk.tobytes()) |
|
except queue.Empty: |
|
continue |
|
|
|
def add_chunk(self, chunk): |
|
"""Add a new chunk to the queue.""" |
|
self.queue.put(chunk) |
|
|
|
def stop(self): |
|
"""Stop writing and ensure all queued data is written.""" |
|
self.stop_event.set() |
|
self.join() |
|
logger.info("Audio writing completed.") |
|
|
|
|
|
class TTSStreamingProcessor: |
|
def __init__(self, model, ckpt_file, vocab_file, ref_audio, ref_text, device=None, dtype=torch.float32): |
|
self.device = device or ( |
|
"cuda" |
|
if torch.cuda.is_available() |
|
else "xpu" |
|
if torch.xpu.is_available() |
|
else "mps" |
|
if torch.backends.mps.is_available() |
|
else "cpu" |
|
) |
|
model_cfg = OmegaConf.load(str(files("f5_tts").joinpath(f"configs/{model}.yaml"))) |
|
self.model_cls = get_class(f"f5_tts.model.{model_cfg.model.backbone}") |
|
self.model_arc = model_cfg.model.arch |
|
self.mel_spec_type = model_cfg.model.mel_spec.mel_spec_type |
|
self.sampling_rate = model_cfg.model.mel_spec.target_sample_rate |
|
|
|
self.model = self.load_ema_model(ckpt_file, vocab_file, dtype) |
|
self.vocoder = self.load_vocoder_model() |
|
|
|
self.update_reference(ref_audio, ref_text) |
|
self._warm_up() |
|
self.file_writer_thread = None |
|
self.first_package = True |
|
|
|
def load_ema_model(self, ckpt_file, vocab_file, dtype): |
|
return load_model( |
|
self.model_cls, |
|
self.model_arc, |
|
ckpt_path=ckpt_file, |
|
mel_spec_type=self.mel_spec_type, |
|
vocab_file=vocab_file, |
|
ode_method="euler", |
|
use_ema=True, |
|
device=self.device, |
|
).to(self.device, dtype=dtype) |
|
|
|
def load_vocoder_model(self): |
|
return load_vocoder(vocoder_name=self.mel_spec_type, is_local=False, local_path=None, device=self.device) |
|
|
|
def update_reference(self, ref_audio, ref_text): |
|
self.ref_audio, self.ref_text = preprocess_ref_audio_text(ref_audio, ref_text) |
|
self.audio, self.sr = torchaudio.load(self.ref_audio) |
|
|
|
ref_audio_duration = self.audio.shape[-1] / self.sr |
|
ref_text_byte_len = len(self.ref_text.encode("utf-8")) |
|
self.max_chars = int(ref_text_byte_len / (ref_audio_duration) * (25 - ref_audio_duration)) |
|
self.few_chars = int(ref_text_byte_len / (ref_audio_duration) * (25 - ref_audio_duration) / 2) |
|
self.min_chars = int(ref_text_byte_len / (ref_audio_duration) * (25 - ref_audio_duration) / 4) |
|
|
|
def _warm_up(self): |
|
logger.info("Warming up the model...") |
|
gen_text = "Warm-up text for the model." |
|
for _ in infer_batch_process( |
|
(self.audio, self.sr), |
|
self.ref_text, |
|
[gen_text], |
|
self.model, |
|
self.vocoder, |
|
progress=None, |
|
device=self.device, |
|
streaming=True, |
|
): |
|
pass |
|
logger.info("Warm-up completed.") |
|
|
|
def generate_stream(self, text, conn): |
|
text_batches = chunk_text(text, max_chars=self.max_chars) |
|
if self.first_package: |
|
text_batches = chunk_text(text_batches[0], max_chars=self.few_chars) + text_batches[1:] |
|
text_batches = chunk_text(text_batches[0], max_chars=self.min_chars) + text_batches[1:] |
|
self.first_package = False |
|
|
|
audio_stream = infer_batch_process( |
|
(self.audio, self.sr), |
|
self.ref_text, |
|
text_batches, |
|
self.model, |
|
self.vocoder, |
|
progress=None, |
|
device=self.device, |
|
streaming=True, |
|
chunk_size=2048, |
|
) |
|
|
|
|
|
if self.file_writer_thread is not None: |
|
self.file_writer_thread.stop() |
|
self.file_writer_thread = AudioFileWriterThread("output.wav", self.sampling_rate) |
|
self.file_writer_thread.start() |
|
|
|
for audio_chunk, _ in audio_stream: |
|
if len(audio_chunk) > 0: |
|
logger.info(f"Generated audio chunk of size: {len(audio_chunk)}") |
|
|
|
|
|
conn.sendall(struct.pack(f"{len(audio_chunk)}f", *audio_chunk)) |
|
|
|
|
|
self.file_writer_thread.add_chunk(audio_chunk) |
|
|
|
logger.info("Finished sending audio stream.") |
|
conn.sendall(b"END") |
|
|
|
|
|
self.file_writer_thread.stop() |
|
|
|
|
|
def handle_client(conn, processor): |
|
try: |
|
with conn: |
|
conn.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) |
|
while True: |
|
data = conn.recv(1024) |
|
if not data: |
|
processor.first_package = True |
|
break |
|
data_str = data.decode("utf-8").strip() |
|
logger.info(f"Received text: {data_str}") |
|
|
|
try: |
|
processor.generate_stream(data_str, conn) |
|
except Exception as inner_e: |
|
logger.error(f"Error during processing: {inner_e}") |
|
traceback.print_exc() |
|
break |
|
except Exception as e: |
|
logger.error(f"Error handling client: {e}") |
|
traceback.print_exc() |
|
|
|
|
|
def start_server(host, port, processor): |
|
with socket.socket(socket.AF_INET, socket.SOCK_STREAM) as s: |
|
s.bind((host, port)) |
|
s.listen() |
|
logger.info(f"Server started on {host}:{port}") |
|
while True: |
|
conn, addr = s.accept() |
|
logger.info(f"Connected by {addr}") |
|
handle_client(conn, processor) |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument("--host", default="0.0.0.0") |
|
parser.add_argument("--port", default=9998) |
|
|
|
parser.add_argument( |
|
"--model", |
|
default="F5TTS_v1_Base", |
|
help="The model name, e.g. F5TTS_v1_Base", |
|
) |
|
parser.add_argument( |
|
"--ckpt_file", |
|
default=str(hf_hub_download(repo_id="SWivid/F5-TTS", filename="F5TTS_v1_Base/model_1250000.safetensors")), |
|
help="Path to the model checkpoint file", |
|
) |
|
parser.add_argument( |
|
"--vocab_file", |
|
default="", |
|
help="Path to the vocab file if customized", |
|
) |
|
|
|
parser.add_argument( |
|
"--ref_audio", |
|
default=str(files("f5_tts").joinpath("infer/examples/basic/basic_ref_en.wav")), |
|
help="Reference audio to provide model with speaker characteristics", |
|
) |
|
parser.add_argument( |
|
"--ref_text", |
|
default="", |
|
help="Reference audio subtitle, leave empty to auto-transcribe", |
|
) |
|
|
|
parser.add_argument("--device", default=None, help="Device to run the model on") |
|
parser.add_argument("--dtype", default=torch.float32, help="Data type to use for model inference") |
|
|
|
args = parser.parse_args() |
|
|
|
try: |
|
|
|
processor = TTSStreamingProcessor( |
|
model=args.model, |
|
ckpt_file=args.ckpt_file, |
|
vocab_file=args.vocab_file, |
|
ref_audio=args.ref_audio, |
|
ref_text=args.ref_text, |
|
device=args.device, |
|
dtype=args.dtype, |
|
) |
|
|
|
|
|
start_server(args.host, args.port, processor) |
|
|
|
except KeyboardInterrupt: |
|
gc.collect() |
|
|