|
|
|
|
|
import argparse |
|
import json |
|
import os |
|
import sys |
|
|
|
sys.path.append(os.getcwd()) |
|
|
|
import multiprocessing as mp |
|
from importlib.resources import files |
|
|
|
import numpy as np |
|
from f5_tts.eval.utils_eval import ( |
|
get_librispeech_test, |
|
run_asr_wer, |
|
run_sim, |
|
) |
|
|
|
rel_path = str(files("f5_tts").joinpath("../../")) |
|
|
|
|
|
def get_args(): |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument("-e", "--eval_task", type=str, default="wer", choices=["sim", "wer"]) |
|
parser.add_argument("-l", "--lang", type=str, default="en") |
|
parser.add_argument("-g", "--gen_wav_dir", type=str, required=True) |
|
parser.add_argument("-p", "--librispeech_test_clean_path", type=str, required=True) |
|
parser.add_argument("-n", "--gpu_nums", type=int, default=8, help="Number of GPUs to use") |
|
parser.add_argument("--local", action="store_true", help="Use local custom checkpoint directory") |
|
return parser.parse_args() |
|
|
|
|
|
def main(): |
|
args = get_args() |
|
eval_task = args.eval_task |
|
lang = args.lang |
|
librispeech_test_clean_path = args.librispeech_test_clean_path |
|
gen_wav_dir = args.gen_wav_dir |
|
metalst = rel_path + "/data/librispeech_pc_test_clean_cross_sentence.lst" |
|
|
|
gpus = list(range(args.gpu_nums)) |
|
test_set = get_librispeech_test(metalst, gen_wav_dir, gpus, librispeech_test_clean_path) |
|
|
|
|
|
|
|
|
|
|
|
local = args.local |
|
if local: |
|
asr_ckpt_dir = "../checkpoints/Systran/faster-whisper-large-v3" |
|
else: |
|
asr_ckpt_dir = "" |
|
wavlm_ckpt_dir = "../checkpoints/UniSpeech/wavlm_large_finetune.pth" |
|
|
|
|
|
|
|
full_results = [] |
|
metrics = [] |
|
|
|
if eval_task == "wer": |
|
with mp.Pool(processes=len(gpus)) as pool: |
|
args = [(rank, lang, sub_test_set, asr_ckpt_dir) for (rank, sub_test_set) in test_set] |
|
results = pool.map(run_asr_wer, args) |
|
for r in results: |
|
full_results.extend(r) |
|
elif eval_task == "sim": |
|
with mp.Pool(processes=len(gpus)) as pool: |
|
args = [(rank, sub_test_set, wavlm_ckpt_dir) for (rank, sub_test_set) in test_set] |
|
results = pool.map(run_sim, args) |
|
for r in results: |
|
full_results.extend(r) |
|
else: |
|
raise ValueError(f"Unknown metric type: {eval_task}") |
|
|
|
result_path = f"{gen_wav_dir}/_{eval_task}_results.jsonl" |
|
with open(result_path, "w") as f: |
|
for line in full_results: |
|
metrics.append(line[eval_task]) |
|
f.write(json.dumps(line, ensure_ascii=False) + "\n") |
|
metric = round(np.mean(metrics), 5) |
|
f.write(f"\n{eval_task.upper()}: {metric}\n") |
|
|
|
print(f"\nTotal {len(metrics)} samples") |
|
print(f"{eval_task.upper()}: {metric}") |
|
print(f"{eval_task.upper()} results saved to {result_path}") |
|
|
|
|
|
if __name__ == "__main__": |
|
main() |
|
|