|
import torch |
|
import gradio as gr |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
|
def load_model(): |
|
model_name = "Qwen/Qwen2.5-Math-1.5B-Instruct" |
|
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
return model, tokenizer |
|
|
|
def respond( |
|
message, |
|
history: list[tuple[str, str]], |
|
system_message, |
|
max_tokens, |
|
temperature, |
|
top_p, |
|
): |
|
messages = [{"role": "system", "content": system_message}] |
|
|
|
for user_msg, bot_reply in history: |
|
messages.append({"role": "user", "content": user_msg}) |
|
if bot_reply: |
|
messages.append({"role": "assistant", "content": bot_reply}) |
|
|
|
messages.append({"role": "user", "content": message}) |
|
|
|
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) |
|
model_inputs = tokenizer([text], return_tensors="pt").to("cuda") |
|
|
|
generated_ids = model.generate( |
|
**model_inputs, |
|
|
|
|
|
|
|
) |
|
|
|
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] |
|
return response |
|
|
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
model, tokenizer = load_model() |
|
|
|
demo = gr.ChatInterface( |
|
respond, |
|
additional_inputs=[ |
|
gr.Textbox(value="You are a friendly Chatbot.", label="System message"), |
|
|
|
|
|
|
|
], |
|
) |
|
|
|
if __name__ == "__main__": |
|
demo.launch() |
|
|