JimmyK300's picture
Update app.py
d5b892f verified
raw
history blame
1.86 kB
import torch
import gradio as gr
from transformers import AutoModelForCausalLM, AutoTokenizer
def load_model():
model_name = "Qwen/Qwen2.5-Math-1.5B-Instruct"
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_name)
return model, tokenizer
def respond(
message,
history: list[tuple[str, str]],
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for user_msg, bot_reply in history:
messages.append({"role": "user", "content": user_msg})
if bot_reply:
messages.append({"role": "assistant", "content": bot_reply})
messages.append({"role": "user", "content": message})
text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
generated_ids = model.generate(
**model_inputs,
# max_new_tokens=max_tokens,
# temperature=temperature,
# top_p=top_p,
)
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
return response
# Load model and tokenizer
device = "cuda" if torch.cuda.is_available() else "cpu"
model, tokenizer = load_model()
demo = gr.ChatInterface(
respond,
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
],
)
if __name__ == "__main__":
demo.launch()