JimmyK300 commited on
Commit
21adf57
·
verified ·
1 Parent(s): df21f25

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +28 -36
app.py CHANGED
@@ -1,11 +1,12 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
9
 
10
  def respond(
11
  message,
@@ -16,49 +17,40 @@ def respond(
16
  top_p,
17
  ):
18
  messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
  messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
  temperature=temperature,
35
  top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
 
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
  demo = gr.ChatInterface(
47
  respond,
48
  additional_inputs=[
49
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
60
  )
61
 
62
-
63
  if __name__ == "__main__":
64
  demo.launch()
 
1
+ import torch
2
  import gradio as gr
3
+ from transformers import AutoModelForCausalLM, AutoTokenizer
 
 
 
 
 
4
 
5
+ def load_model():
6
+ model_name = "Qwen/Qwen2.5-Math-1.5B-Instruct"
7
+ model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto")
8
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
9
+ return model, tokenizer
10
 
11
  def respond(
12
  message,
 
17
  top_p,
18
  ):
19
  messages = [{"role": "system", "content": system_message}]
20
+
21
+ for user_msg, bot_reply in history:
22
+ messages.append({"role": "user", "content": user_msg})
23
+ if bot_reply:
24
+ messages.append({"role": "assistant", "content": bot_reply})
25
+
 
26
  messages.append({"role": "user", "content": message})
27
+
28
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
29
+ model_inputs = tokenizer([text], return_tensors="pt").to("cuda")
30
+
31
+ generated_ids = model.generate(
32
+ **model_inputs,
33
+ max_new_tokens=max_tokens,
34
  temperature=temperature,
35
  top_p=top_p,
36
+ )
37
+
38
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
39
+ return response
 
40
 
41
+ # Load model and tokenizer
42
+ device = "cuda" if torch.cuda.is_available() else "cpu"
43
+ model, tokenizer = load_model()
44
 
 
 
 
45
  demo = gr.ChatInterface(
46
  respond,
47
  additional_inputs=[
48
  gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
49
  gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
50
  gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
51
+ gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"),
 
 
 
 
 
 
52
  ],
53
  )
54
 
 
55
  if __name__ == "__main__":
56
  demo.launch()