import torch import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer def load_model(): model_name = "Qwen/Qwen2.5-Math-1.5B-Instruct" model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.float16, device_map="auto") tokenizer = AutoTokenizer.from_pretrained(model_name) return model, tokenizer def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] for user_msg, bot_reply in history: messages.append({"role": "user", "content": user_msg}) if bot_reply: messages.append({"role": "assistant", "content": bot_reply}) messages.append({"role": "user", "content": message}) text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) model_inputs = tokenizer([text], return_tensors="pt").to("cuda") generated_ids = model.generate( **model_inputs, max_new_tokens=max_tokens, temperature=temperature, top_p=top_p, ) response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] return response # Load model and tokenizer device = "cuda" if torch.cuda.is_available() else "cpu" model, tokenizer = load_model() demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are a friendly Chatbot.", label="System message"), gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)"), ], ) if __name__ == "__main__": demo.launch()