File size: 7,137 Bytes
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
15faeca
1c817fd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ff6756
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import requests
from bs4 import BeautifulSoup
from faker import Faker
from urllib.request import urlretrieve
import urllib.request
from urllib3.util.retry import Retry
import time
import os
import wget
import json
import unicodedata
import nltk
from sklearn.datasets import fetch_20newsgroups
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier
import warnings
from requests.adapters import HTTPAdapter
from constants import *

MAX_XDD = 5
use_google_search = True
use_20newsgroup = True
fake = Faker()

def create_retry_session():
    retry_strategy = Retry(
        total=5,
        status_forcelist=[429, 500, 502, 503, 504],
        method_whitelist=["GET"],
        backoff_factor=1,
    )
    adapter = HTTPAdapter(max_retries=retry_strategy)
    http = requests.Session()
    http.mount("https://", adapter)
    http.mount("http://", adapter)
    return http

def get_google_search_results(query, retry_session):
    if not use_google_search:
        return []
    headers = {"User-Agent": fake.user_agent()}
    search_url = f"https://www.google.com/search?q={query}"
    try:
        response = retry_session.get(search_url, headers=headers, timeout=10)
        response.raise_for_status()
    except requests.exceptions.RequestException as e:
        return []
    soup = BeautifulSoup(response.text, "html.parser")
    search_results = []
    for a_tag in soup.find_all('a', href=True):
        if 'url?q=' in a_tag['href'] and not a_tag['href'].startswith("https://accounts.google.com"):
            search_results.append(a_tag['href'].split('url?q=')[1].split('&')[0])
    return search_results

def fetch_20newsgroup_data():
    if not use_20newsgroup:
        return []
    try:
        newsgroups_train = fetch_20newsgroups(subset='train', categories=['talk.trivia', 'rec.sport.baseball', 'sci.med', 'comp.sys.ibm.pc.hardware', 'soc.religion.christian'])
        data = newsgroups_train.data
        return data
    except Exception as e:
        return []

def download_file(url, filename, folder, retries=3):
    filepath = os.path.join(folder, filename)
    if os.path.exists(filepath):
        return True
    os.makedirs(folder, exist_ok=True)
    for attempt in range(retries):
        try:
            wget.download(url, out=filepath)
            return True
        except Exception as e:
            if attempt < retries - 1:
                time.sleep(2)
            else:
                return False
    return False

def download_gpt2_files(folder, model_url, model_file, encoder_url, encoder_file, vocab_url, vocab_file):
    if not os.path.exists(folder):
        os.makedirs(folder)
    if not os.path.exists(os.path.join(folder, model_file)):
        download_file(model_url, model_file, folder)
    if not os.path.exists(os.path.join(folder, encoder_file)):
        download_file(encoder_url, encoder_file, folder)
    if not os.path.exists(os.path.join(folder, vocab_file)):
        download_file(vocab_url, vocab_file, folder)

def download_translation_files(folder, model_files_urls):
    if not os.path.exists(folder):
        os.makedirs(folder)
    for url, filename in model_files_urls:
        if not os.path.exists(os.path.join(folder, filename)):
            download_file(url, filename, folder)

def download_codegen_files(folder, model_files_urls):
    if not os.path.exists(folder):
        os.makedirs(folder)
    for url, filename in model_files_urls:
        if not os.path.exists(os.path.join(folder, filename)):
            download_file(url, filename, folder)

def download_summarization_files(folder, model_files_urls):
    if not os.path.exists(folder):
        os.makedirs(folder)
    for url, filename in model_files_urls:
        if not os.path.exists(os.path.join(folder, filename)):
            download_file(url, filename, folder)

def download_imagegen_files(folder, model_files_urls):
    if not os.path.exists(folder):
        os.makedirs(folder)
    for url, filename in model_files_urls:
        if not os.path.exists(os.path.join(folder, filename)):
            download_file(url, filename, folder)

def download_image_to_3d_files(folder, model_files_urls):
    if not os.path.exists(folder):
        os.makedirs(folder)
    for url, filename in model_files_urls:
        if not os.path.exists(os.path.join(folder, filename)):
            download_file(url, filename, folder)

def download_text_to_video_files(folder, model_files_urls):
    if not os.path.exists(folder):
        os.makedirs(folder)
    for url, filename in model_files_urls:
        if not os.path.exists(os.path.join(folder, filename)):
            download_file(url, filename, folder)

def download_sentiment_files(folder, model_files_urls):
    if not os.path.exists(folder):
        os.makedirs(folder)
    for url, filename in model_files_urls:
        if not os.path.exists(os.path.join(folder, filename)):
            download_file(url, filename, folder)

def download_stt_files(folder, model_files_urls):
    if not os.path.exists(folder):
        os.makedirs(folder)
    for url, filename in model_files_urls:
        if not os.path.exists(os.path.join(folder, filename)):
            download_file(url, filename, folder)

def download_tts_files(folder, model_files_urls):
    if not os.path.exists(folder):
        os.makedirs(folder)
    for url, filename in model_files_urls:
        if not os.path.exists(os.path.join(folder, filename)):
            download_file(url, filename, folder)

def download_musicgen_files(folder, model_files_urls):
    if not os.path.exists(folder):
        os.makedirs(folder)
    for url, filename in model_files_urls:
        if not os.path.exists(os.path.join(folder, filename)):
            download_file(url, filename, folder)

def bytes_to_unicode_gpt2():
    bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1))
    cs = bs[:]
    n = 0
    for b in range(2**8):
        if b not in bs:
            bs.append(b)
            cs.append(2**8+n)
            n = n+1
    cs = [chr(n) for n in cs]
    return dict(zip(bs, cs))

def get_codegen_tokenizer_pure(vocab_file, merges_file):
    vocab = json.load(open(vocab_file))
    merges = open(merges_file, 'r', encoding="utf-8").read().split('\n')[1:-1]
    bpe_ranks = dict(zip(merges, range(len(merges))))
    byte_encoder = bytes_to_unicode()
    byte_decoder = {v: k for k, v in byte_encoder.items()}
    tokenizer_regex = re.compile(r'''<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]| ?[^\s\p{L}\p{N}]+|\s+(?!\S)|\s+''')
    tokenize = lambda text: re.findall(tokenizer_regex, text)
    encoder_obj = Encoder(
        encoder=vocab,
        decoder={v: u for u, v in vocab.items()},
        bpe_ranks=bpe_ranks,
        byte_encoder=byte_encoder,
        byte_decoder=byte_decoder,
        tokenize=tokenize
    )
    return encoder_obj