LPX55's picture
Update raw.py
e4e298c verified
raw
history blame
2.2 kB
import torch
import spaces
import os
from diffusers.utils import load_image
from diffusers import FluxControlNetModel, FluxControlNetPipeline, AutoencoderKL
import gradio as gr
huggingface_token = os.getenv("HUGGINFACE_TOKEN")
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=huggingface_token).to("cuda")
# Load pipeline
controlnet = FluxControlNetModel.from_pretrained(
"jasperai/Flux.1-dev-Controlnet-Upscaler",
torch_dtype=torch.bfloat16
)
pipe = FluxControlNetPipeline.from_pretrained(
"LPX55/FLUX.1-merged_uncensored",
controlnet=controlnet,
torch_dtype=torch.bfloat16,
vae=good_vae,
token=huggingface_token
)
pipe.to("cuda")
@spaces.GPU
def generate_image(prompt, scale, steps, control_image, controlnet_conditioning_scale, guidance_scale):
# Load control image
control_image = load_image(control_image)
w, h = control_image.size
# Upscale x1
control_image = control_image.resize((int(w * scale), int(h * scale)))
print("Size to: " + str(control_image.size[0]) + ", " + str(control_image.size[1]))
image = pipe(
prompt=prompt,
control_image=control_image,
controlnet_conditioning_scale=controlnet_conditioning_scale,
num_inference_steps=steps,
guidance_scale=guidance_scale,
height=control_image.size[1],
width=control_image.size[0]
).images[0]
return image
# Create Gradio interface
iface = gr.Interface(
fn=generate_image,
inputs=[
gr.Textbox(lines=2, placeholder="Enter your prompt here..."),
gr.Slider(1, 3, value=1, label="Scale"),
gr.Slider(6, 30, value=8, label="Steps"),
gr.Image(type="pil", label="Control Image"),
gr.Slider(0, 1, value=0.6, label="ControlNet Scale"),
gr.Slider(1, 20, value=3.5, label="Guidance Scale"),
],
outputs=[
gr.Image(type="pil", label="Generated Image", format="png"),
],
title="FLUX ControlNet Image Generation",
description="Generate images using the FluxControlNetPipeline. Upload a control image and enter a prompt to create an image.",
)
# Launch the app
iface.launch()