Spaces:
Running
on
Zero
Running
on
Zero
Update optimized.py
Browse files- optimized.py +24 -32
optimized.py
CHANGED
@@ -22,48 +22,40 @@ huggingface_token = os.getenv("HUGGINFACE_TOKEN")
|
|
22 |
# device_map=None, # Disable automatic mapping
|
23 |
# token=huggingface_token
|
24 |
# )
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
)
|
29 |
-
|
|
|
30 |
pipe = FluxControlNetPipeline.from_pretrained(
|
31 |
"LPX55/FLUX.1-merged_uncensored",
|
32 |
-
controlnet=
|
33 |
-
|
|
|
|
|
|
|
34 |
torch_dtype=torch.bfloat16,
|
35 |
use_safetensors=True,
|
36 |
device_map=None,
|
37 |
-
token=huggingface_token
|
38 |
)
|
39 |
|
40 |
-
#
|
41 |
-
|
42 |
-
|
43 |
-
max_memory={0:"37GiB", "cpu":"60GiB"},
|
44 |
-
device_types=["cuda", "cpu"]
|
45 |
-
)
|
46 |
-
pipe = dispatch_model(pipe, device_map=device_map, main_device="cuda")
|
47 |
-
pipe.enable_sequential_cpu_offload() # No arguments for new API
|
48 |
-
|
49 |
-
# Precision alignment (AFTER offloading) <source_id data="pipeline_flux_controlnet.py" />
|
50 |
-
pipe.unet.to(dtype=torch.bfloat16)
|
51 |
-
pipe.controlnet.to(dtype=torch.bfloat16)
|
52 |
-
pipe.vae.to(dtype=torch.bfloat16)
|
53 |
-
|
54 |
-
# XFormers with Flux compatibility
|
55 |
-
if torch.cuda.is_available():
|
56 |
-
try:
|
57 |
-
pipe.enable_xformers_memory_efficient_attention(
|
58 |
-
attention_op=None # Auto-select best operator
|
59 |
-
)
|
60 |
-
except Exception as e:
|
61 |
-
print(f"xFormers error: {e}")
|
62 |
-
pipe.enable_sdp_attention(mode="math")
|
63 |
|
64 |
-
#
|
65 |
-
pipe.
|
|
|
66 |
|
|
|
|
|
|
|
67 |
|
68 |
print(f"VRAM used: {torch.cuda.memory_allocated()/1e9:.2f}GB")
|
69 |
@spaces.GPU
|
|
|
22 |
# device_map=None, # Disable automatic mapping
|
23 |
# token=huggingface_token
|
24 |
# )
|
25 |
+
|
26 |
+
good_vae = AutoencoderKL.from_pretrained(
|
27 |
+
"black-forest-labs/FLUX.1-dev",
|
28 |
+
subfolder="vae",
|
29 |
+
torch_dtype=torch.bfloat16,
|
30 |
+
use_safetensors=True,
|
31 |
+
token=huggingface_token # Fix typo in variable name
|
32 |
)
|
33 |
+
|
34 |
+
# 2. Main Pipeline Initialization WITH VAE SCOPE
|
35 |
pipe = FluxControlNetPipeline.from_pretrained(
|
36 |
"LPX55/FLUX.1-merged_uncensored",
|
37 |
+
controlnet=FluxControlNetModel.from_pretrained(
|
38 |
+
"jasperai/Flux.1-dev-Controlnet-Upscaler",
|
39 |
+
torch_dtype=torch.bfloat16
|
40 |
+
),
|
41 |
+
vae=good_vae, # Now defined in scope
|
42 |
torch_dtype=torch.bfloat16,
|
43 |
use_safetensors=True,
|
44 |
device_map=None,
|
45 |
+
token=huggingface_token # Note corrected env var name
|
46 |
)
|
47 |
|
48 |
+
# 3. Strict Order for Optimization Steps
|
49 |
+
# A. Apply CPU Offloading FIRST
|
50 |
+
pipe.enable_sequential_cpu_offload()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
+
# B. Enable Memory Optimizations
|
53 |
+
pipe.enable_vae_tiling()
|
54 |
+
pipe.enable_xformers_memory_efficient_attention()
|
55 |
|
56 |
+
# C. Unified Precision Handling
|
57 |
+
for comp in [pipe.unet, pipe.vae, pipe.controlnet]:
|
58 |
+
comp.to(dtype=torch.bfloat16)
|
59 |
|
60 |
print(f"VRAM used: {torch.cuda.memory_allocated()/1e9:.2f}GB")
|
61 |
@spaces.GPU
|