Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import gradio as gr
|
|
6 |
import numpy as np
|
7 |
import spaces
|
8 |
import torch
|
9 |
-
from diffusers import FluxControlNetModel, FluxPipeline, AutoencoderTiny
|
10 |
from transformers import T5Tokenizer
|
11 |
from diffusers.pipelines import FluxControlNetPipeline
|
12 |
from diffusers.utils import load_image
|
@@ -41,13 +41,13 @@ model_path = snapshot_download(
|
|
41 |
|
42 |
tokenizer_2 = T5Tokenizer.from_pretrained("LPX55/FLUX.1-merged_uncensored", subfolder="tokenizer_2", token=huggingface_token)
|
43 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device)
|
44 |
-
|
45 |
# Load pipeline
|
46 |
controlnet = FluxControlNetModel.from_pretrained(
|
47 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
48 |
).to(device)
|
49 |
pipe = FluxControlNetPipeline.from_pretrained(
|
50 |
-
"LPX55/FLUX.1-merged_uncensored", controlnet=controlnet, torch_dtype=torch.bfloat16, vae=
|
51 |
)
|
52 |
# pipe.load_lora_weights(
|
53 |
# hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
|
|
|
6 |
import numpy as np
|
7 |
import spaces
|
8 |
import torch
|
9 |
+
from diffusers import FluxControlNetModel, FluxPipeline, AutoencoderTiny, AutoencoderKL
|
10 |
from transformers import T5Tokenizer
|
11 |
from diffusers.pipelines import FluxControlNetPipeline
|
12 |
from diffusers.utils import load_image
|
|
|
41 |
|
42 |
tokenizer_2 = T5Tokenizer.from_pretrained("LPX55/FLUX.1-merged_uncensored", subfolder="tokenizer_2", token=huggingface_token)
|
43 |
taef1 = AutoencoderTiny.from_pretrained("madebyollin/taef1", torch_dtype=torch.bfloat16).to(device)
|
44 |
+
good_vae = AutoencoderKL.from_pretrained("black-forest-labs/FLUX.1-dev", subfolder="vae", torch_dtype=torch.bfloat16, token=huggingface_token).to(device)
|
45 |
# Load pipeline
|
46 |
controlnet = FluxControlNetModel.from_pretrained(
|
47 |
"jasperai/Flux.1-dev-Controlnet-Upscaler", torch_dtype=torch.bfloat16
|
48 |
).to(device)
|
49 |
pipe = FluxControlNetPipeline.from_pretrained(
|
50 |
+
"LPX55/FLUX.1-merged_uncensored", controlnet=controlnet, torch_dtype=torch.bfloat16, vae=good_vae, token=huggingface_token,
|
51 |
)
|
52 |
# pipe.load_lora_weights(
|
53 |
# hf_hub_download("ByteDance/Hyper-SD", "Hyper-FLUX.1-dev-8steps-lora.safetensors"), adapter_name="hyper-sd"
|