Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torchaudio
|
3 |
+
import torch
|
4 |
+
from transformers import AutoProcessor, MusicgenForConditionalGeneration
|
5 |
+
|
6 |
+
# Load MusicGen model
|
7 |
+
model_name = "facebook/musicgen-small"
|
8 |
+
model = MusicgenForConditionalGeneration.from_pretrained(model_name)
|
9 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
10 |
+
model.to("cuda" if torch.cuda.is_available() else "cpu")
|
11 |
+
|
12 |
+
def generate_music(description):
|
13 |
+
inputs = processor(text=[description], return_tensors="pt")
|
14 |
+
inputs = {k: v.to(model.device) for k, v in inputs.items()}
|
15 |
+
audio_values = model.generate(**inputs, max_new_tokens=256)
|
16 |
+
audio = processor.decode(audio_values[0], sampling_rate=16000)
|
17 |
+
torchaudio.save("output.wav", audio.unsqueeze(0), 16000)
|
18 |
+
return "output.wav"
|
19 |
+
|
20 |
+
# Gradio UI
|
21 |
+
demo = gr.Interface(
|
22 |
+
fn=generate_music,
|
23 |
+
inputs=gr.Textbox(label="Describe your song"),
|
24 |
+
outputs=gr.Audio(label="Generated Track"),
|
25 |
+
title="LarynxLab MVP",
|
26 |
+
description="Type a music idea and get a short AI instrumental."
|
27 |
+
)
|
28 |
+
|
29 |
+
demo.launch()
|