File size: 22,953 Bytes
7fe98ab
 
de0b990
d61a0bc
d8bb216
6c12bfc
 
 
d8bb216
 
 
6c12bfc
d8bb216
d61a0bc
6c12bfc
 
 
d8bb216
6c12bfc
d8bb216
6c12bfc
d8bb216
6c12bfc
d8bb216
6c12bfc
d191aca
3d79b08
 
 
d8bb216
c4fd703
626b672
 
c4fd703
 
d8bb216
 
 
 
626b672
d8bb216
 
626b672
d8bb216
c4fd703
 
d8bb216
 
 
 
626b672
7fe98ab
6c12bfc
d8bb216
c4fd703
d8bb216
 
 
6c12bfc
d8bb216
626b672
6c12bfc
626b672
d8bb216
 
 
 
 
626b672
 
d8bb216
 
c942f44
626b672
6c12bfc
d8bb216
626b672
d8bb216
 
626b672
d8bb216
626b672
d191aca
b972f40
 
de0b990
4d68dfd
3d79b08
6c12bfc
4d68dfd
 
 
a930ff9
4d68dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05ab75c
 
b4e4e06
05ab75c
 
 
 
 
 
 
4d68dfd
05ab75c
d8bb216
 
6243da9
d8bb216
 
aebf56b
626b672
d8bb216
 
 
6c12bfc
3d79b08
 
4d68dfd
3d79b08
 
 
 
 
 
 
 
d8bb216
 
 
 
 
3d79b08
 
 
6c12bfc
d8bb216
 
 
6c12bfc
 
626b672
 
4d68dfd
3d79b08
626b672
3d79b08
d8bb216
 
 
 
 
626b672
 
 
d8bb216
626b672
 
6c12bfc
 
d8bb216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
626b672
d8bb216
 
 
 
 
 
 
 
 
4d68dfd
d8bb216
626b672
d8bb216
 
 
626b672
3d79b08
de0b990
626b672
 
 
 
 
cbdec18
 
 
 
 
 
 
b4e4e06
 
 
 
cbdec18
 
b4e4e06
 
 
cbdec18
 
 
 
 
 
 
 
3d79b08
cbdec18
 
 
b4e4e06
 
 
 
 
 
 
 
 
 
3d79b08
cbdec18
 
 
3d79b08
cbdec18
626b672
 
 
d8bb216
 
 
 
3d79b08
d8bb216
 
6c12bfc
 
d8bb216
626b672
 
d8bb216
6c12bfc
d8bb216
626b672
d8bb216
6c12bfc
d8bb216
 
 
 
 
 
626b672
d8bb216
626b672
d8bb216
626b672
d8bb216
 
 
 
 
826eb28
7fe98ab
f62fc75
6243da9
f62fc75
 
6243da9
f62fc75
 
6243da9
4d68dfd
626b672
2eea82e
 
 
 
 
 
 
de0b990
6ad4062
df03e5b
4d68dfd
6c12bfc
 
3d79b08
 
190cbef
3d79b08
 
 
 
 
 
 
b4e4e06
3d79b08
4d68dfd
3d79b08
 
 
 
 
6ad4062
3d79b08
 
 
 
 
 
d8bb216
2eea82e
6c12bfc
d8bb216
a1fc814
7fe98ab
6c12bfc
7d1232d
d8bb216
6c12bfc
d8bb216
826eb28
6c12bfc
d8bb216
 
4d68dfd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6243da9
4d68dfd
 
 
 
 
 
 
 
 
 
6243da9
 
 
 
 
 
 
 
 
d8bb216
 
6243da9
 
d8bb216
 
 
6243da9
 
d8bb216
 
 
6243da9
 
d8bb216
 
71c64ba
 
 
d8bb216
 
 
626b672
d8bb216
654e0c3
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
import gradio as gr
import torch
import spaces
import numpy as np
import random
import os
import yaml
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil

from inference import (
    create_ltx_video_pipeline,
    create_latent_upsampler,
    load_image_to_tensor_with_resize_and_crop,
    seed_everething,
    get_device,
    calculate_padding,
    load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy

config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml"
with open(config_file_path, "r") as file:
    PIPELINE_CONFIG_YAML = yaml.safe_load(file)

LTX_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 257

FPS = 30.0 

# --- Global variables for loaded models ---
pipeline_instance = None
latent_upsampler_instance = None
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)

print("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(
    repo_id=LTX_REPO,
    filename=PIPELINE_CONFIG_YAML["checkpoint_path"],
    local_dir=models_dir,
    local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
print(f"Distilled model path: {distilled_model_actual_path}")

SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(
    repo_id=LTX_REPO,
    filename=SPATIAL_UPSCALER_FILENAME,
    local_dir=models_dir,
    local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")

print("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(
    ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
    precision=PIPELINE_CONFIG_YAML["precision"],
    text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
    sampler=PIPELINE_CONFIG_YAML["sampler"],
    device="cpu",
    enhance_prompt=False,
    prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
    prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
)
print("LTX Video pipeline created on CPU.")

if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
    print("Creating latent upsampler on CPU...")
    latent_upsampler_instance = create_latent_upsampler(
        PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
        device="cpu"
    )
    print("Latent upsampler created on CPU.")

target_inference_device = "cuda"
print(f"Target inference device: {target_inference_device}")
pipeline_instance.to(target_inference_device)
if latent_upsampler_instance: 
    latent_upsampler_instance.to(target_inference_device)


# --- Helper function for dimension calculation ---
MIN_DIM_SLIDER = 256  # As defined in the sliders minimum attribute
TARGET_FIXED_SIDE = 768 # Desired fixed side length as per requirement

def calculate_new_dimensions(orig_w, orig_h):
    """
    Calculates new dimensions for height and width sliders based on original media dimensions.
    Ensures one side is TARGET_FIXED_SIDE, the other is scaled proportionally,
    both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE].
    """
    if orig_w == 0 or orig_h == 0:
        # Default to TARGET_FIXED_SIDE square if original dimensions are invalid
        return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE)

    if orig_w >= orig_h:  # Landscape or square
        new_h = TARGET_FIXED_SIDE
        aspect_ratio = orig_w / orig_h
        new_w_ideal = new_h * aspect_ratio
        
        # Round to nearest multiple of 32
        new_w = round(new_w_ideal / 32) * 32
        
        # Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]
        new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
        # Ensure new_h is also clamped (TARGET_FIXED_SIDE should be within these bounds if configured correctly)
        new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE)) 
    else:  # Portrait
        new_w = TARGET_FIXED_SIDE
        aspect_ratio = orig_h / orig_w # Use H/W ratio for portrait scaling
        new_h_ideal = new_w * aspect_ratio
        
        # Round to nearest multiple of 32
        new_h = round(new_h_ideal / 32) * 32
        
        # Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]
        new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
        # Ensure new_w is also clamped
        new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))

    return int(new_h), int(new_w)

def get_duration(prompt, negative_prompt, input_image_filepath, input_video_filepath,
             height_ui, width_ui, mode,
             duration_ui, # Removed ui_steps
             ui_frames_to_use,
             seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
             progress):
    if duration_ui > 7:
        return 75
    else:
        return 60

@spaces.GPU(duration=get_duration)
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
             height_ui, width_ui, mode,
             duration_ui, 
             ui_frames_to_use,
             seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
             progress=gr.Progress(track_tqdm=True)):

    if randomize_seed:
        seed_ui = random.randint(0, 2**32 - 1)
    seed_everething(int(seed_ui))
    
    target_frames_ideal = duration_ui * FPS
    target_frames_rounded = round(target_frames_ideal)
    if target_frames_rounded < 1: 
        target_frames_rounded = 1
    
    n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
    actual_num_frames = int(n_val * 8 + 1)

    actual_num_frames = max(9, actual_num_frames)
    actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
    
    actual_height = int(height_ui)
    actual_width = int(width_ui)

    height_padded = ((actual_height - 1) // 32 + 1) * 32
    width_padded = ((actual_width - 1) // 32 + 1) * 32
    num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1 
    if num_frames_padded != actual_num_frames:
        print(f"Warning: actual_num_frames ({actual_num_frames}) and num_frames_padded ({num_frames_padded}) differ. Using num_frames_padded for pipeline.")
    
    padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)

    call_kwargs = {
        "prompt": prompt,
        "negative_prompt": negative_prompt,
        "height": height_padded,
        "width": width_padded,
        "num_frames": num_frames_padded, 
        "frame_rate": int(FPS), 
        "generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
        "output_type": "pt", 
        "conditioning_items": None,
        "media_items": None,
        "decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
        "decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
        "stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
        "image_cond_noise_scale": 0.15,
        "is_video": True,
        "vae_per_channel_normalize": True,
        "mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
        "offload_to_cpu": False,
        "enhance_prompt": False,
    }

    stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
    if stg_mode_str.lower() in ["stg_av", "attention_values"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
    elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
    elif stg_mode_str.lower() in ["stg_r", "residual"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
    elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
        call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
    else:
        raise ValueError(f"Invalid stg_mode: {stg_mode_str}")

    if mode == "image-to-video" and input_image_filepath:
        try:
            media_tensor = load_image_to_tensor_with_resize_and_crop(
                input_image_filepath, actual_height, actual_width
            )
            media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
            call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
        except Exception as e:
            print(f"Error loading image {input_image_filepath}: {e}")
            raise gr.Error(f"Could not load image: {e}")
    elif mode == "video-to-video" and input_video_filepath:
        try:
            call_kwargs["media_items"] = load_media_file(
                media_path=input_video_filepath,
                height=actual_height, 
                width=actual_width,
                max_frames=int(ui_frames_to_use), 
                padding=padding_values
            ).to(target_inference_device)
        except Exception as e:
            print(f"Error loading video {input_video_filepath}: {e}")
            raise gr.Error(f"Could not load video: {e}")

    print(f"Moving models to {target_inference_device} for inference (if not already there)...")
    
    active_latent_upsampler = None
    if improve_texture_flag and latent_upsampler_instance:
        active_latent_upsampler = latent_upsampler_instance

    result_images_tensor = None
    if improve_texture_flag:
        if not active_latent_upsampler:
            raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
        
        multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
        
        first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
        first_pass_args["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
        # num_inference_steps will be derived from len(timesteps) in the pipeline
        first_pass_args.pop("num_inference_steps", None)


        second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
        second_pass_args["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
        # num_inference_steps will be derived from len(timesteps) in the pipeline
        second_pass_args.pop("num_inference_steps", None)
        
        multi_scale_call_kwargs = call_kwargs.copy()
        multi_scale_call_kwargs.update({
            "downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
            "first_pass": first_pass_args,
            "second_pass": second_pass_args,
        })
        
        print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
        result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
    else:
        single_pass_call_kwargs = call_kwargs.copy()
        first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {})

        single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps")
        single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
        single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale")
        single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale")
        single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list")
        
        # Remove keys that might conflict or are not used in single pass / handled by above
        single_pass_call_kwargs.pop("num_inference_steps", None) 
        single_pass_call_kwargs.pop("first_pass", None) 
        single_pass_call_kwargs.pop("second_pass", None)
        single_pass_call_kwargs.pop("downscale_factor", None)
        
        print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
        result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images

    if result_images_tensor is None:
        raise gr.Error("Generation failed.")

    pad_left, pad_right, pad_top, pad_bottom = padding_values
    slice_h_end = -pad_bottom if pad_bottom > 0 else None
    slice_w_end = -pad_right if pad_right > 0 else None
    
    result_images_tensor = result_images_tensor[
        :, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
    ]

    video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
    
    video_np = np.clip(video_np, 0, 1) 
    video_np = (video_np * 255).astype(np.uint8)

    temp_dir = tempfile.mkdtemp()
    timestamp = random.randint(10000,99999)
    output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
    
    try:
        with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
            for frame_idx in range(video_np.shape[0]):
                progress(frame_idx / video_np.shape[0], desc="Saving video")
                video_writer.append_data(video_np[frame_idx])
    except Exception as e:
        print(f"Error saving video with macro_block_size=1: {e}")
        try:
            with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
                 for frame_idx in range(video_np.shape[0]):
                    progress(frame_idx / video_np.shape[0], desc="Saving video (fallback ffmpeg)")
                    video_writer.append_data(video_np[frame_idx])
        except Exception as e2:
            print(f"Fallback video saving error: {e2}")
            raise gr.Error(f"Failed to save video: {e2}")
            
    return output_video_path, seed_ui

def update_task_image():
    return "image-to-video"

def update_task_text():
    return "text-to-video"

def update_task_video():
    return "video-to-video"

# --- Gradio UI Definition ---
css="""
#col-container {
    margin: 0 auto;
    max-width: 900px;
}
"""

with gr.Blocks(css=css) as demo:
    gr.Markdown("# LTX Video 0.9.7 Distilled")
    gr.Markdown("Fast high quality video generation. [Model](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-distilled.safetensors) [GitHub](https://github.com/Lightricks/LTX-Video) [Diffusers](#)")
    
    with gr.Row():
        with gr.Column():
            with gr.Tab("image-to-video") as image_tab:
                video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None)
                image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"])
                i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
                i2v_button = gr.Button("Generate Image-to-Video", variant="primary")
            with gr.Tab("text-to-video") as text_tab:
                image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
                video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
                t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
                t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
            with gr.Tab("video-to-video", visible=False) as video_tab:
                image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
                video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]) # type defaults to filepath
                frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.")
                v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
                v2v_button = gr.Button("Generate Video-to-Video", variant="primary")

            duration_input = gr.Slider(
                label="Video Duration (seconds)", 
                minimum=0.3, 
                maximum=8.5, 
                value=2,  
                step=0.1, 
                info=f"Target video duration (0.3s to 8.5s)"
            )
            improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.")

        with gr.Column():
            output_video = gr.Video(label="Generated Video", interactive=False)
            # gr.DeepLinkButton()

    with gr.Accordion("Advanced settings", open=False):
        mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False)
        negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
        with gr.Row():
            seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1)
            randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
        with gr.Row():
            guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
        with gr.Row():
            height_input = gr.Slider(label="Height", value=512, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
            width_input = gr.Slider(label="Width", value=704, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")


    # --- Event handlers for updating dimensions on upload ---
    def handle_image_upload_for_dims(image_filepath, current_h, current_w):
        if not image_filepath:  # Image cleared or no image initially
            # Keep current slider values if image is cleared or no input
            return gr.update(value=current_h), gr.update(value=current_w)
        try:
            img = Image.open(image_filepath)
            orig_w, orig_h = img.size
            new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
            return gr.update(value=new_h), gr.update(value=new_w)
        except Exception as e:
            print(f"Error processing image for dimension update: {e}")
            # Keep current slider values on error
            return gr.update(value=current_h), gr.update(value=current_w)

    def handle_video_upload_for_dims(video_filepath, current_h, current_w):
        if not video_filepath:  # Video cleared or no video initially
            return gr.update(value=current_h), gr.update(value=current_w)
        try:
            # Ensure video_filepath is a string for os.path.exists and imageio
            video_filepath_str = str(video_filepath) 
            if not os.path.exists(video_filepath_str):
                print(f"Video file path does not exist for dimension update: {video_filepath_str}")
                return gr.update(value=current_h), gr.update(value=current_w)

            orig_w, orig_h = -1, -1
            with imageio.get_reader(video_filepath_str) as reader:
                meta = reader.get_meta_data()
                if 'size' in meta:
                    orig_w, orig_h = meta['size']
                else:
                    # Fallback: read first frame if 'size' not in metadata
                    try:
                        first_frame = reader.get_data(0)
                        # Shape is (h, w, c) for frames
                        orig_h, orig_w = first_frame.shape[0], first_frame.shape[1]
                    except Exception as e_frame:
                        print(f"Could not get video size from metadata or first frame: {e_frame}")
                        return gr.update(value=current_h), gr.update(value=current_w)
            
            if orig_w == -1 or orig_h == -1: # If dimensions couldn't be determined
                 print(f"Could not determine dimensions for video: {video_filepath_str}")
                 return gr.update(value=current_h), gr.update(value=current_w)

            new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
            return gr.update(value=new_h), gr.update(value=new_w)
        except Exception as e:
            # Log type of video_filepath for debugging if it's not a path-like string
            print(f"Error processing video for dimension update: {e} (Path: {video_filepath}, Type: {type(video_filepath)})")
            return gr.update(value=current_h), gr.update(value=current_w)

    
    image_i2v.upload(
        fn=handle_image_upload_for_dims,
        inputs=[image_i2v, height_input, width_input],
        outputs=[height_input, width_input]
    )
    video_v2v.upload(
        fn=handle_video_upload_for_dims,
        inputs=[video_v2v, height_input, width_input],
        outputs=[height_input, width_input]
    )

    image_tab.select(
        fn=update_task_image,
        outputs=[mode]
    )
    text_tab.select(
        fn=update_task_text,
        outputs=[mode]
    )
    
    t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
                  height_input, width_input, mode,
                  duration_input, frames_to_use, 
                  seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
    
    i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
                  height_input, width_input, mode,
                  duration_input, frames_to_use, 
                  seed_input, randomize_seed_input, guidance_scale_input, improve_texture]

    v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
                  height_input, width_input, mode,
                  duration_input, frames_to_use, 
                  seed_input, randomize_seed_input, guidance_scale_input, improve_texture]

    t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video, seed_input], api_name="text_to_video")
    i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video, seed_input], api_name="image_to_video")
    v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video, seed_input], api_name="video_to_video")

if __name__ == "__main__":
    if os.path.exists(models_dir) and os.path.isdir(models_dir):
        print(f"Model directory: {Path(models_dir).resolve()}")
    
    demo.queue().launch(debug=True, share=False, mcp_server=True)