Spaces:
Running
on
Zero
Running
on
Zero
File size: 22,953 Bytes
7fe98ab de0b990 d61a0bc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 d61a0bc 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d8bb216 6c12bfc d191aca 3d79b08 d8bb216 c4fd703 626b672 c4fd703 d8bb216 626b672 d8bb216 626b672 d8bb216 c4fd703 d8bb216 626b672 7fe98ab 6c12bfc d8bb216 c4fd703 d8bb216 6c12bfc d8bb216 626b672 6c12bfc 626b672 d8bb216 626b672 d8bb216 c942f44 626b672 6c12bfc d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d191aca b972f40 de0b990 4d68dfd 3d79b08 6c12bfc 4d68dfd a930ff9 4d68dfd 05ab75c b4e4e06 05ab75c 4d68dfd 05ab75c d8bb216 6243da9 d8bb216 aebf56b 626b672 d8bb216 6c12bfc 3d79b08 4d68dfd 3d79b08 d8bb216 3d79b08 6c12bfc d8bb216 6c12bfc 626b672 4d68dfd 3d79b08 626b672 3d79b08 d8bb216 626b672 d8bb216 626b672 6c12bfc d8bb216 626b672 d8bb216 4d68dfd d8bb216 626b672 d8bb216 626b672 3d79b08 de0b990 626b672 cbdec18 b4e4e06 cbdec18 b4e4e06 cbdec18 3d79b08 cbdec18 b4e4e06 3d79b08 cbdec18 3d79b08 cbdec18 626b672 d8bb216 3d79b08 d8bb216 6c12bfc d8bb216 626b672 d8bb216 6c12bfc d8bb216 626b672 d8bb216 6c12bfc d8bb216 626b672 d8bb216 626b672 d8bb216 626b672 d8bb216 826eb28 7fe98ab f62fc75 6243da9 f62fc75 6243da9 f62fc75 6243da9 4d68dfd 626b672 2eea82e de0b990 6ad4062 df03e5b 4d68dfd 6c12bfc 3d79b08 190cbef 3d79b08 b4e4e06 3d79b08 4d68dfd 3d79b08 6ad4062 3d79b08 d8bb216 2eea82e 6c12bfc d8bb216 a1fc814 7fe98ab 6c12bfc 7d1232d d8bb216 6c12bfc d8bb216 826eb28 6c12bfc d8bb216 4d68dfd 6243da9 4d68dfd 6243da9 d8bb216 6243da9 d8bb216 6243da9 d8bb216 6243da9 d8bb216 71c64ba d8bb216 626b672 d8bb216 654e0c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 |
import gradio as gr
import torch
import spaces
import numpy as np
import random
import os
import yaml
from pathlib import Path
import imageio
import tempfile
from PIL import Image
from huggingface_hub import hf_hub_download
import shutil
from inference import (
create_ltx_video_pipeline,
create_latent_upsampler,
load_image_to_tensor_with_resize_and_crop,
seed_everething,
get_device,
calculate_padding,
load_media_file
)
from ltx_video.pipelines.pipeline_ltx_video import ConditioningItem, LTXMultiScalePipeline, LTXVideoPipeline
from ltx_video.utils.skip_layer_strategy import SkipLayerStrategy
config_file_path = "configs/ltxv-13b-0.9.7-distilled.yaml"
with open(config_file_path, "r") as file:
PIPELINE_CONFIG_YAML = yaml.safe_load(file)
LTX_REPO = "Lightricks/LTX-Video"
MAX_IMAGE_SIZE = PIPELINE_CONFIG_YAML.get("max_resolution", 1280)
MAX_NUM_FRAMES = 257
FPS = 30.0
# --- Global variables for loaded models ---
pipeline_instance = None
latent_upsampler_instance = None
models_dir = "downloaded_models_gradio_cpu_init"
Path(models_dir).mkdir(parents=True, exist_ok=True)
print("Downloading models (if not present)...")
distilled_model_actual_path = hf_hub_download(
repo_id=LTX_REPO,
filename=PIPELINE_CONFIG_YAML["checkpoint_path"],
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["checkpoint_path"] = distilled_model_actual_path
print(f"Distilled model path: {distilled_model_actual_path}")
SPATIAL_UPSCALER_FILENAME = PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"]
spatial_upscaler_actual_path = hf_hub_download(
repo_id=LTX_REPO,
filename=SPATIAL_UPSCALER_FILENAME,
local_dir=models_dir,
local_dir_use_symlinks=False
)
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"] = spatial_upscaler_actual_path
print(f"Spatial upscaler model path: {spatial_upscaler_actual_path}")
print("Creating LTX Video pipeline on CPU...")
pipeline_instance = create_ltx_video_pipeline(
ckpt_path=PIPELINE_CONFIG_YAML["checkpoint_path"],
precision=PIPELINE_CONFIG_YAML["precision"],
text_encoder_model_name_or_path=PIPELINE_CONFIG_YAML["text_encoder_model_name_or_path"],
sampler=PIPELINE_CONFIG_YAML["sampler"],
device="cpu",
enhance_prompt=False,
prompt_enhancer_image_caption_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_image_caption_model_name_or_path"],
prompt_enhancer_llm_model_name_or_path=PIPELINE_CONFIG_YAML["prompt_enhancer_llm_model_name_or_path"],
)
print("LTX Video pipeline created on CPU.")
if PIPELINE_CONFIG_YAML.get("spatial_upscaler_model_path"):
print("Creating latent upsampler on CPU...")
latent_upsampler_instance = create_latent_upsampler(
PIPELINE_CONFIG_YAML["spatial_upscaler_model_path"],
device="cpu"
)
print("Latent upsampler created on CPU.")
target_inference_device = "cuda"
print(f"Target inference device: {target_inference_device}")
pipeline_instance.to(target_inference_device)
if latent_upsampler_instance:
latent_upsampler_instance.to(target_inference_device)
# --- Helper function for dimension calculation ---
MIN_DIM_SLIDER = 256 # As defined in the sliders minimum attribute
TARGET_FIXED_SIDE = 768 # Desired fixed side length as per requirement
def calculate_new_dimensions(orig_w, orig_h):
"""
Calculates new dimensions for height and width sliders based on original media dimensions.
Ensures one side is TARGET_FIXED_SIDE, the other is scaled proportionally,
both are multiples of 32, and within [MIN_DIM_SLIDER, MAX_IMAGE_SIZE].
"""
if orig_w == 0 or orig_h == 0:
# Default to TARGET_FIXED_SIDE square if original dimensions are invalid
return int(TARGET_FIXED_SIDE), int(TARGET_FIXED_SIDE)
if orig_w >= orig_h: # Landscape or square
new_h = TARGET_FIXED_SIDE
aspect_ratio = orig_w / orig_h
new_w_ideal = new_h * aspect_ratio
# Round to nearest multiple of 32
new_w = round(new_w_ideal / 32) * 32
# Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
# Ensure new_h is also clamped (TARGET_FIXED_SIDE should be within these bounds if configured correctly)
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
else: # Portrait
new_w = TARGET_FIXED_SIDE
aspect_ratio = orig_h / orig_w # Use H/W ratio for portrait scaling
new_h_ideal = new_w * aspect_ratio
# Round to nearest multiple of 32
new_h = round(new_h_ideal / 32) * 32
# Clamp to [MIN_DIM_SLIDER, MAX_IMAGE_SIZE]
new_h = max(MIN_DIM_SLIDER, min(new_h, MAX_IMAGE_SIZE))
# Ensure new_w is also clamped
new_w = max(MIN_DIM_SLIDER, min(new_w, MAX_IMAGE_SIZE))
return int(new_h), int(new_w)
def get_duration(prompt, negative_prompt, input_image_filepath, input_video_filepath,
height_ui, width_ui, mode,
duration_ui, # Removed ui_steps
ui_frames_to_use,
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
progress):
if duration_ui > 7:
return 75
else:
return 60
@spaces.GPU(duration=get_duration)
def generate(prompt, negative_prompt, input_image_filepath, input_video_filepath,
height_ui, width_ui, mode,
duration_ui,
ui_frames_to_use,
seed_ui, randomize_seed, ui_guidance_scale, improve_texture_flag,
progress=gr.Progress(track_tqdm=True)):
if randomize_seed:
seed_ui = random.randint(0, 2**32 - 1)
seed_everething(int(seed_ui))
target_frames_ideal = duration_ui * FPS
target_frames_rounded = round(target_frames_ideal)
if target_frames_rounded < 1:
target_frames_rounded = 1
n_val = round((float(target_frames_rounded) - 1.0) / 8.0)
actual_num_frames = int(n_val * 8 + 1)
actual_num_frames = max(9, actual_num_frames)
actual_num_frames = min(MAX_NUM_FRAMES, actual_num_frames)
actual_height = int(height_ui)
actual_width = int(width_ui)
height_padded = ((actual_height - 1) // 32 + 1) * 32
width_padded = ((actual_width - 1) // 32 + 1) * 32
num_frames_padded = ((actual_num_frames - 2) // 8 + 1) * 8 + 1
if num_frames_padded != actual_num_frames:
print(f"Warning: actual_num_frames ({actual_num_frames}) and num_frames_padded ({num_frames_padded}) differ. Using num_frames_padded for pipeline.")
padding_values = calculate_padding(actual_height, actual_width, height_padded, width_padded)
call_kwargs = {
"prompt": prompt,
"negative_prompt": negative_prompt,
"height": height_padded,
"width": width_padded,
"num_frames": num_frames_padded,
"frame_rate": int(FPS),
"generator": torch.Generator(device=target_inference_device).manual_seed(int(seed_ui)),
"output_type": "pt",
"conditioning_items": None,
"media_items": None,
"decode_timestep": PIPELINE_CONFIG_YAML["decode_timestep"],
"decode_noise_scale": PIPELINE_CONFIG_YAML["decode_noise_scale"],
"stochastic_sampling": PIPELINE_CONFIG_YAML["stochastic_sampling"],
"image_cond_noise_scale": 0.15,
"is_video": True,
"vae_per_channel_normalize": True,
"mixed_precision": (PIPELINE_CONFIG_YAML["precision"] == "mixed_precision"),
"offload_to_cpu": False,
"enhance_prompt": False,
}
stg_mode_str = PIPELINE_CONFIG_YAML.get("stg_mode", "attention_values")
if stg_mode_str.lower() in ["stg_av", "attention_values"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionValues
elif stg_mode_str.lower() in ["stg_as", "attention_skip"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.AttentionSkip
elif stg_mode_str.lower() in ["stg_r", "residual"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.Residual
elif stg_mode_str.lower() in ["stg_t", "transformer_block"]:
call_kwargs["skip_layer_strategy"] = SkipLayerStrategy.TransformerBlock
else:
raise ValueError(f"Invalid stg_mode: {stg_mode_str}")
if mode == "image-to-video" and input_image_filepath:
try:
media_tensor = load_image_to_tensor_with_resize_and_crop(
input_image_filepath, actual_height, actual_width
)
media_tensor = torch.nn.functional.pad(media_tensor, padding_values)
call_kwargs["conditioning_items"] = [ConditioningItem(media_tensor.to(target_inference_device), 0, 1.0)]
except Exception as e:
print(f"Error loading image {input_image_filepath}: {e}")
raise gr.Error(f"Could not load image: {e}")
elif mode == "video-to-video" and input_video_filepath:
try:
call_kwargs["media_items"] = load_media_file(
media_path=input_video_filepath,
height=actual_height,
width=actual_width,
max_frames=int(ui_frames_to_use),
padding=padding_values
).to(target_inference_device)
except Exception as e:
print(f"Error loading video {input_video_filepath}: {e}")
raise gr.Error(f"Could not load video: {e}")
print(f"Moving models to {target_inference_device} for inference (if not already there)...")
active_latent_upsampler = None
if improve_texture_flag and latent_upsampler_instance:
active_latent_upsampler = latent_upsampler_instance
result_images_tensor = None
if improve_texture_flag:
if not active_latent_upsampler:
raise gr.Error("Spatial upscaler model not loaded or improve_texture not selected, cannot use multi-scale.")
multi_scale_pipeline_obj = LTXMultiScalePipeline(pipeline_instance, active_latent_upsampler)
first_pass_args = PIPELINE_CONFIG_YAML.get("first_pass", {}).copy()
first_pass_args["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
# num_inference_steps will be derived from len(timesteps) in the pipeline
first_pass_args.pop("num_inference_steps", None)
second_pass_args = PIPELINE_CONFIG_YAML.get("second_pass", {}).copy()
second_pass_args["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
# num_inference_steps will be derived from len(timesteps) in the pipeline
second_pass_args.pop("num_inference_steps", None)
multi_scale_call_kwargs = call_kwargs.copy()
multi_scale_call_kwargs.update({
"downscale_factor": PIPELINE_CONFIG_YAML["downscale_factor"],
"first_pass": first_pass_args,
"second_pass": second_pass_args,
})
print(f"Calling multi-scale pipeline (eff. HxW: {actual_height}x{actual_width}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
result_images_tensor = multi_scale_pipeline_obj(**multi_scale_call_kwargs).images
else:
single_pass_call_kwargs = call_kwargs.copy()
first_pass_config_from_yaml = PIPELINE_CONFIG_YAML.get("first_pass", {})
single_pass_call_kwargs["timesteps"] = first_pass_config_from_yaml.get("timesteps")
single_pass_call_kwargs["guidance_scale"] = float(ui_guidance_scale) # UI overrides YAML
single_pass_call_kwargs["stg_scale"] = first_pass_config_from_yaml.get("stg_scale")
single_pass_call_kwargs["rescaling_scale"] = first_pass_config_from_yaml.get("rescaling_scale")
single_pass_call_kwargs["skip_block_list"] = first_pass_config_from_yaml.get("skip_block_list")
# Remove keys that might conflict or are not used in single pass / handled by above
single_pass_call_kwargs.pop("num_inference_steps", None)
single_pass_call_kwargs.pop("first_pass", None)
single_pass_call_kwargs.pop("second_pass", None)
single_pass_call_kwargs.pop("downscale_factor", None)
print(f"Calling base pipeline (padded HxW: {height_padded}x{width_padded}, Frames: {actual_num_frames} -> Padded: {num_frames_padded}) on {target_inference_device}")
result_images_tensor = pipeline_instance(**single_pass_call_kwargs).images
if result_images_tensor is None:
raise gr.Error("Generation failed.")
pad_left, pad_right, pad_top, pad_bottom = padding_values
slice_h_end = -pad_bottom if pad_bottom > 0 else None
slice_w_end = -pad_right if pad_right > 0 else None
result_images_tensor = result_images_tensor[
:, :, :actual_num_frames, pad_top:slice_h_end, pad_left:slice_w_end
]
video_np = result_images_tensor[0].permute(1, 2, 3, 0).cpu().float().numpy()
video_np = np.clip(video_np, 0, 1)
video_np = (video_np * 255).astype(np.uint8)
temp_dir = tempfile.mkdtemp()
timestamp = random.randint(10000,99999)
output_video_path = os.path.join(temp_dir, f"output_{timestamp}.mp4")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], macro_block_size=1) as video_writer:
for frame_idx in range(video_np.shape[0]):
progress(frame_idx / video_np.shape[0], desc="Saving video")
video_writer.append_data(video_np[frame_idx])
except Exception as e:
print(f"Error saving video with macro_block_size=1: {e}")
try:
with imageio.get_writer(output_video_path, fps=call_kwargs["frame_rate"], format='FFMPEG', codec='libx264', quality=8) as video_writer:
for frame_idx in range(video_np.shape[0]):
progress(frame_idx / video_np.shape[0], desc="Saving video (fallback ffmpeg)")
video_writer.append_data(video_np[frame_idx])
except Exception as e2:
print(f"Fallback video saving error: {e2}")
raise gr.Error(f"Failed to save video: {e2}")
return output_video_path, seed_ui
def update_task_image():
return "image-to-video"
def update_task_text():
return "text-to-video"
def update_task_video():
return "video-to-video"
# --- Gradio UI Definition ---
css="""
#col-container {
margin: 0 auto;
max-width: 900px;
}
"""
with gr.Blocks(css=css) as demo:
gr.Markdown("# LTX Video 0.9.7 Distilled")
gr.Markdown("Fast high quality video generation. [Model](https://huggingface.co/Lightricks/LTX-Video/blob/main/ltxv-13b-0.9.7-distilled.safetensors) [GitHub](https://github.com/Lightricks/LTX-Video) [Diffusers](#)")
with gr.Row():
with gr.Column():
with gr.Tab("image-to-video") as image_tab:
video_i_hidden = gr.Textbox(label="video_i", visible=False, value=None)
image_i2v = gr.Image(label="Input Image", type="filepath", sources=["upload", "webcam", "clipboard"])
i2v_prompt = gr.Textbox(label="Prompt", value="The creature from the image starts to move", lines=3)
i2v_button = gr.Button("Generate Image-to-Video", variant="primary")
with gr.Tab("text-to-video") as text_tab:
image_n_hidden = gr.Textbox(label="image_n", visible=False, value=None)
video_n_hidden = gr.Textbox(label="video_n", visible=False, value=None)
t2v_prompt = gr.Textbox(label="Prompt", value="A majestic dragon flying over a medieval castle", lines=3)
t2v_button = gr.Button("Generate Text-to-Video", variant="primary")
with gr.Tab("video-to-video", visible=False) as video_tab:
image_v_hidden = gr.Textbox(label="image_v", visible=False, value=None)
video_v2v = gr.Video(label="Input Video", sources=["upload", "webcam"]) # type defaults to filepath
frames_to_use = gr.Slider(label="Frames to use from input video", minimum=9, maximum=MAX_NUM_FRAMES, value=9, step=8, info="Number of initial frames to use for conditioning/transformation. Must be N*8+1.")
v2v_prompt = gr.Textbox(label="Prompt", value="Change the style to cinematic anime", lines=3)
v2v_button = gr.Button("Generate Video-to-Video", variant="primary")
duration_input = gr.Slider(
label="Video Duration (seconds)",
minimum=0.3,
maximum=8.5,
value=2,
step=0.1,
info=f"Target video duration (0.3s to 8.5s)"
)
improve_texture = gr.Checkbox(label="Improve Texture (multi-scale)", value=True, info="Uses a two-pass generation for better quality, but is slower. Recommended for final output.")
with gr.Column():
output_video = gr.Video(label="Generated Video", interactive=False)
# gr.DeepLinkButton()
with gr.Accordion("Advanced settings", open=False):
mode = gr.Dropdown(["text-to-video", "image-to-video", "video-to-video"], label="task", value="image-to-video", visible=False)
negative_prompt_input = gr.Textbox(label="Negative Prompt", value="worst quality, inconsistent motion, blurry, jittery, distorted", lines=2)
with gr.Row():
seed_input = gr.Number(label="Seed", value=42, precision=0, minimum=0, maximum=2**32-1)
randomize_seed_input = gr.Checkbox(label="Randomize Seed", value=True)
with gr.Row():
guidance_scale_input = gr.Slider(label="Guidance Scale (CFG)", minimum=1.0, maximum=10.0, value=PIPELINE_CONFIG_YAML.get("first_pass", {}).get("guidance_scale", 1.0), step=0.1, info="Controls how much the prompt influences the output. Higher values = stronger influence.")
with gr.Row():
height_input = gr.Slider(label="Height", value=512, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
width_input = gr.Slider(label="Width", value=704, step=32, minimum=MIN_DIM_SLIDER, maximum=MAX_IMAGE_SIZE, info="Must be divisible by 32.")
# --- Event handlers for updating dimensions on upload ---
def handle_image_upload_for_dims(image_filepath, current_h, current_w):
if not image_filepath: # Image cleared or no image initially
# Keep current slider values if image is cleared or no input
return gr.update(value=current_h), gr.update(value=current_w)
try:
img = Image.open(image_filepath)
orig_w, orig_h = img.size
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
print(f"Error processing image for dimension update: {e}")
# Keep current slider values on error
return gr.update(value=current_h), gr.update(value=current_w)
def handle_video_upload_for_dims(video_filepath, current_h, current_w):
if not video_filepath: # Video cleared or no video initially
return gr.update(value=current_h), gr.update(value=current_w)
try:
# Ensure video_filepath is a string for os.path.exists and imageio
video_filepath_str = str(video_filepath)
if not os.path.exists(video_filepath_str):
print(f"Video file path does not exist for dimension update: {video_filepath_str}")
return gr.update(value=current_h), gr.update(value=current_w)
orig_w, orig_h = -1, -1
with imageio.get_reader(video_filepath_str) as reader:
meta = reader.get_meta_data()
if 'size' in meta:
orig_w, orig_h = meta['size']
else:
# Fallback: read first frame if 'size' not in metadata
try:
first_frame = reader.get_data(0)
# Shape is (h, w, c) for frames
orig_h, orig_w = first_frame.shape[0], first_frame.shape[1]
except Exception as e_frame:
print(f"Could not get video size from metadata or first frame: {e_frame}")
return gr.update(value=current_h), gr.update(value=current_w)
if orig_w == -1 or orig_h == -1: # If dimensions couldn't be determined
print(f"Could not determine dimensions for video: {video_filepath_str}")
return gr.update(value=current_h), gr.update(value=current_w)
new_h, new_w = calculate_new_dimensions(orig_w, orig_h)
return gr.update(value=new_h), gr.update(value=new_w)
except Exception as e:
# Log type of video_filepath for debugging if it's not a path-like string
print(f"Error processing video for dimension update: {e} (Path: {video_filepath}, Type: {type(video_filepath)})")
return gr.update(value=current_h), gr.update(value=current_w)
image_i2v.upload(
fn=handle_image_upload_for_dims,
inputs=[image_i2v, height_input, width_input],
outputs=[height_input, width_input]
)
video_v2v.upload(
fn=handle_video_upload_for_dims,
inputs=[video_v2v, height_input, width_input],
outputs=[height_input, width_input]
)
image_tab.select(
fn=update_task_image,
outputs=[mode]
)
text_tab.select(
fn=update_task_text,
outputs=[mode]
)
t2v_inputs = [t2v_prompt, negative_prompt_input, image_n_hidden, video_n_hidden,
height_input, width_input, mode,
duration_input, frames_to_use,
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
i2v_inputs = [i2v_prompt, negative_prompt_input, image_i2v, video_i_hidden,
height_input, width_input, mode,
duration_input, frames_to_use,
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
v2v_inputs = [v2v_prompt, negative_prompt_input, image_v_hidden, video_v2v,
height_input, width_input, mode,
duration_input, frames_to_use,
seed_input, randomize_seed_input, guidance_scale_input, improve_texture]
t2v_button.click(fn=generate, inputs=t2v_inputs, outputs=[output_video, seed_input], api_name="text_to_video")
i2v_button.click(fn=generate, inputs=i2v_inputs, outputs=[output_video, seed_input], api_name="image_to_video")
v2v_button.click(fn=generate, inputs=v2v_inputs, outputs=[output_video, seed_input], api_name="video_to_video")
if __name__ == "__main__":
if os.path.exists(models_dir) and os.path.isdir(models_dir):
print(f"Model directory: {Path(models_dir).resolve()}")
demo.queue().launch(debug=True, share=False, mcp_server=True) |