File size: 13,825 Bytes
5e0b9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5219368
5e0b9df
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
# ------------------------------------------------------------------------
# HOTR official code : hotr/models/hotr.py
# Copyright (c) Kakao Brain, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------
import torch
import torch.nn as nn
import torch.nn.functional as F
import copy
import time
import datetime

from hotr.util.misc import NestedTensor, nested_tensor_from_tensor_list
from .feed_forward import MLP

class HOTR(nn.Module):
    def __init__(self, detr,
                 num_hoi_queries,
                 num_actions,
                 interaction_transformer,
                 augpath_name,
                 share_dec_param,
                 stop_grad_stage,
                 freeze_detr,
                 share_enc,
                 pretrained_dec,
                 temperature,
                 hoi_aux_loss,
                 return_obj_class=None):
        super().__init__()

        # * Instance Transformer ---------------
        self.detr = detr
        if freeze_detr:
            # if this flag is given, freeze the object detection related parameters of DETR
            for p in self.parameters():
                p.requires_grad_(False)
        hidden_dim = detr.transformer.d_model
        # --------------------------------------

        # * Interaction Transformer -----------------------------------------
        self.num_queries = num_hoi_queries
        self.query_embed = nn.Embedding(self.num_queries, hidden_dim)
        self.H_Pointer_embed   = MLP(hidden_dim, hidden_dim, hidden_dim, 3)
        self.O_Pointer_embed   = MLP(hidden_dim, hidden_dim, hidden_dim, 3)
        self.action_embed = nn.Linear(hidden_dim, num_actions+1)
        # --------------------------------------------------------------------


        # * HICO-DET FFN heads ---------------------------------------------
        self.return_obj_class = (return_obj_class is not None)
        if return_obj_class: self._valid_obj_ids = return_obj_class + [return_obj_class[-1]+1]
        # ------------------------------------------------------------------
        # * Transformer Options ---------------------------------------------
        self.interaction_transformer = interaction_transformer

        if share_enc: # share encoder
            self.interaction_transformer.encoder = detr.transformer.encoder

        if pretrained_dec: # free variables for interaction decoder
            self.interaction_transformer.decoder = copy.deepcopy(detr.transformer.decoder)
            for p in self.interaction_transformer.decoder.parameters():
                p.requires_grad_(True)
        # ---------------------------------------------------------------------
        #Augmented paths

        self.aug_paths = augpath_name

        if 'p2' in augpath_name:
            if not share_dec_param:
                self.xtoHO_interaction_decoder = copy.deepcopy(self.interaction_transformer.decoder)
                self.HOtoI_interaction_decoder = copy.deepcopy(self.interaction_transformer.decoder)
            else:
                self.xtoHO_interaction_decoder = self.interaction_transformer.decoder
                self.HOtoI_interaction_decoder = self.interaction_transformer.decoder

            self.query_embed_HOtoI = nn.Embedding(self.num_queries, hidden_dim)
            self.query_embed_HOtoI2 = nn.Embedding(self.num_queries, hidden_dim)
            self.H_Pointer_embed_HOtoI   = MLP(hidden_dim, hidden_dim, hidden_dim, 3)
            self.O_Pointer_embed_HOtoI   = MLP(hidden_dim, hidden_dim, hidden_dim, 3)
            self.action_embed_HOtoI = nn.Linear(hidden_dim, num_actions+1)

        if 'p3' in augpath_name:
            if not share_dec_param:
                self.xtoHI_interaction_decoder = copy.deepcopy(self.interaction_transformer.decoder)
                self.HItoO_interaction_decoder = copy.deepcopy(self.interaction_transformer.decoder)
            else:
                self.xtoHI_interaction_decoder = self.interaction_transformer.decoder
                self.HItoO_interaction_decoder = self.interaction_transformer.decoder

            self.query_embed_HItoO = nn.Embedding(self.num_queries, hidden_dim)
            self.query_embed_HItoO2 = nn.Embedding(self.num_queries, hidden_dim)
            self.H_Pointer_embed_HItoO   = MLP(hidden_dim, hidden_dim, hidden_dim, 3)
            self.O_Pointer_embed_HItoO   = MLP(hidden_dim, hidden_dim, hidden_dim, 3)
            self.action_embed_HItoO = nn.Linear(hidden_dim, num_actions+1)

        if 'p4' in augpath_name:
            if not share_dec_param:
                self.xtoOI_interaction_decoder = copy.deepcopy(self.interaction_transformer.decoder)
                self.OItoH_interaction_decoder = copy.deepcopy(self.interaction_transformer.decoder)
            else:
                self.xtoOI_interaction_decoder = self.interaction_transformer.decoder
                self.OItoH_interaction_decoder = self.interaction_transformer.decoder

            self.query_embed_OItoH = nn.Embedding(self.num_queries, hidden_dim)
            self.query_embed_OItoH2 = nn.Embedding(self.num_queries, hidden_dim)
            self.H_Pointer_embed_OItoH  = MLP(hidden_dim, hidden_dim, hidden_dim, 3)
            self.O_Pointer_embed_OItoH  = MLP(hidden_dim, hidden_dim, hidden_dim, 3)
            self.action_embed_OItoH = nn.Linear(hidden_dim, num_actions+1)

        self.stop_grad_stage = stop_grad_stage

        # * Loss Options -------------------
        self.tau = temperature
        self.hoi_aux_loss = hoi_aux_loss
        # ----------------------------------

    def forward(self, samples: NestedTensor):
        if isinstance(samples, (list, torch.Tensor)):
            samples = nested_tensor_from_tensor_list(samples)
        
        # >>>>>>>>>>>>  BACKBONE LAYERS  <<<<<<<<<<<<<<<
        features, pos = self.detr.backbone(samples)
        bs = features[-1].tensors.shape[0]
        src, mask = features[-1].decompose()
        assert mask is not None
        # ----------------------------------------------

        # >>>>>>>>>>>> OBJECT DETECTION LAYERS <<<<<<<<<<
        start_time = time.time()
        hs, memory = self.detr.transformer(self.detr.input_proj(src), mask, self.detr.query_embed.weight, pos[-1])
        inst_repr = F.normalize(hs[-1], p=2, dim=2) # instance representations

        # Prediction Heads for Object Detection
        outputs_class = self.detr.class_embed(hs)
        outputs_coord = self.detr.bbox_embed(hs).sigmoid()
        object_detection_time = time.time() - start_time
        # -----------------------------------------------

        # >>>>>>>>>>>> HOI DETECTION LAYERS <<<<<<<<<<<<<<<
        start_time = time.time()
        assert hasattr(self, 'interaction_transformer'), "Missing Interaction Transformer."
        H_Pointer_reprs_bag,O_Pointer_reprs_bag,outputs_action=[],[],[]
        # main path P1
        interaction_hs= self.interaction_transformer(self.detr.input_proj(src), mask, self.query_embed.weight, pos[-1])[0] # interaction representations
        H_Pointer_reprs_bag.append(F.normalize(self.H_Pointer_embed(interaction_hs), p=2, dim=-1))
        O_Pointer_reprs_bag.append(F.normalize(self.O_Pointer_embed(interaction_hs), p=2, dim=-1))
        outputs_action.append(self.action_embed(interaction_hs))
        
        if len(self.aug_paths)!=0:
            pos_aug = pos[-1].flatten(2).permute(2, 0, 1)
            mask_aug = mask.flatten(1)
        
        # P2 (x->HO->I)
        if 'p2' in self.aug_paths:
            tgt_2 = torch.zeros_like(self.query_embed_HOtoI.weight.unsqueeze(1).repeat(1, bs, 1))
            hs_HOtoI = self.xtoHO_interaction_decoder(tgt_2,memory,memory_key_padding_mask=mask_aug, pos=pos_aug, query_pos=self.query_embed_HOtoI.weight.unsqueeze(1).repeat(1, bs, 1)).transpose(1,2)
            tgt_HOtoI = hs_HOtoI.transpose(1,2)[-1] if not self.stop_grad_stage else hs_HOtoI.clone().detach().transpose(1,2)[-1]
            hs2_HOtoI = self.HOtoI_interaction_decoder(tgt_HOtoI,memory,memory_key_padding_mask=mask_aug, pos=pos_aug, query_pos=self.query_embed_HOtoI2.weight.unsqueeze(1).repeat(1, bs, 1)).transpose(1,2)
            H_Pointer_reprs_bag.append(F.normalize(self.H_Pointer_embed_HOtoI(hs_HOtoI), p=2, dim=-1))
            O_Pointer_reprs_bag.append(F.normalize(self.O_Pointer_embed_HOtoI(hs_HOtoI), p=2, dim=-1))
            outputs_action.append(self.action_embed_HOtoI(hs2_HOtoI))
        # P3 (x->HI->O)
        if 'p3' in self.aug_paths:
            tgt_3 = torch.zeros_like(self.query_embed_HItoO.weight.unsqueeze(1).repeat(1, bs, 1))
            hs_HItoO = self.xtoHI_interaction_decoder(tgt_3,memory,memory_key_padding_mask=mask_aug, pos=pos_aug, query_pos=self.query_embed_HItoO.weight.unsqueeze(1).repeat(1, bs, 1)).transpose(1,2)
            tgt_HItoO = hs_HItoO.transpose(1,2)[-1] if not self.stop_grad_stage else hs_HItoO.clone().detach().transpose(1,2)[-1]
            hs2_HItoO = self.HItoO_interaction_decoder(tgt_HItoO,memory,memory_key_padding_mask=mask_aug, pos=pos_aug, query_pos=self.query_embed_HItoO2.weight.unsqueeze(1).repeat(1, bs, 1)).transpose(1,2)
            H_Pointer_reprs_bag.append(F.normalize(self.H_Pointer_embed_HItoO(hs_HItoO), p=2, dim=-1))
            O_Pointer_reprs_bag.append(F.normalize(self.O_Pointer_embed_HItoO(hs2_HItoO), p=2, dim=-1))
            outputs_action.append(self.action_embed_HItoO(hs_HItoO))
        # P4 (x->OI->H)
        if 'p4' in self.aug_paths:
            tgt_4 = torch.zeros_like(self.query_embed_OItoH.weight.unsqueeze(1).repeat(1, bs, 1))
            hs_OItoH = self.xtoOI_interaction_decoder(tgt_3,memory,memory_key_padding_mask=mask_aug, pos=pos_aug, query_pos=self.query_embed_OItoH.weight.unsqueeze(1).repeat(1, bs, 1)).transpose(1,2)
            tgt_OItoH = hs_OItoH.transpose(1,2)[-1] if not self.stop_grad_stage else hs_OItoH.clone().detach().transpose(1,2)[-1]
            hs2_OItoH = self.OItoH_interaction_decoder(tgt_OItoH,memory,memory_key_padding_mask=mask_aug, pos=pos_aug, query_pos=self.query_embed_OItoH2.weight.unsqueeze(1).repeat(1, bs, 1)).transpose(1,2)
            H_Pointer_reprs_bag.append(F.normalize(self.H_Pointer_embed_OItoH(hs2_OItoH), p=2, dim=-1))
            O_Pointer_reprs_bag.append(F.normalize(self.O_Pointer_embed_OItoH(hs_OItoH), p=2, dim=-1))
            outputs_action.append(self.action_embed_OItoH(hs_OItoH))

        inst_repr_all=inst_repr.transpose(1,2).repeat(1+len(self.aug_paths),1,1)

        H_Pointer_reprs_bag=torch.cat(H_Pointer_reprs_bag,1)
        O_Pointer_reprs_bag=torch.cat(O_Pointer_reprs_bag,1)
        # import pdb;pdb.set_trace()
        outputs_hidx = [(torch.bmm(H_Pointer_repr, inst_repr_all)) / self.tau for H_Pointer_repr in H_Pointer_reprs_bag] #(dec_layer,(1+len(aug))*bs,dec_q,hidden_dim)
        outputs_oidx = [(torch.bmm(O_Pointer_repr, inst_repr_all)) / self.tau for O_Pointer_repr in O_Pointer_reprs_bag]

        outputs_action=torch.stack(outputs_action,dim=2) #(dec_layer,bs,1+#aug,dec_q,#action)
        
        # --------------------------------------------------
        hoi_detection_time = time.time() - start_time
        hoi_recognition_time = max(hoi_detection_time - object_detection_time, 0)
        # -------------------------------------------------------------------

        # [Target Classification]
        if self.return_obj_class:
            detr_logits = outputs_class[-1, ..., self._valid_obj_ids]
            o_indices = [output_oidx.max(-1)[-1].view(1+len(self.aug_paths),bs,self.num_queries).transpose(0,1) for output_oidx in outputs_oidx]
            obj_logit_stack = [torch.stack([detr_logits[batch_, o_idx, :] for batch_, o_idc in enumerate(o_indice) for o_idx in o_idc], 0) for o_indice in o_indices]
            outputs_obj_class = obj_logit_stack

        out = {
            "pred_logits": outputs_class[-1],
            "pred_boxes": outputs_coord[-1],
            "pred_hidx": outputs_hidx[-1],
            "pred_oidx": outputs_oidx[-1],
            "pred_actions": outputs_action[-1],
            "hoi_recognition_time": hoi_recognition_time,
        }

        if self.return_obj_class: out["pred_obj_logits"] = outputs_obj_class[-1]
        # import pdb;pdb.set_trace()
        if self.hoi_aux_loss: # auxiliary loss
            out['hoi_aux_outputs'] = \
                self._set_aux_loss_with_tgt(outputs_class, outputs_coord, outputs_hidx, outputs_oidx, outputs_action, outputs_obj_class) \
                if self.return_obj_class else \
                self._set_aux_loss(outputs_class, outputs_coord, outputs_hidx, outputs_oidx, outputs_action)

        return out

    @torch.jit.unused
    def _set_aux_loss(self, outputs_class, outputs_coord, outputs_hidx, outputs_oidx, outputs_action):
        return [{'pred_logits': a,  'pred_boxes': b, 'pred_hidx': c, 'pred_oidx': d, 'pred_actions': e}
                for a, b, c, d, e in zip(
                    outputs_class[-1:].repeat((outputs_action.shape[0], 1, 1, 1)),
                    outputs_coord[-1:].repeat((outputs_action.shape[0], 1, 1, 1)),
                    outputs_hidx[:-1],
                    outputs_oidx[:-1],
                    outputs_action[:-1])]

    @torch.jit.unused
    def _set_aux_loss_with_tgt(self, outputs_class, outputs_coord, outputs_hidx, outputs_oidx, outputs_action, outputs_tgt):
        return [{'pred_logits': a,  'pred_boxes': b, 'pred_hidx': c, 'pred_oidx': d, 'pred_actions': e, 'pred_obj_logits': f}
                for a, b, c, d, e, f in zip(
                    outputs_class[-1:].repeat((outputs_action.shape[0], 1, 1, 1)),
                    outputs_coord[-1:].repeat((outputs_action.shape[0], 1, 1, 1)),
                    outputs_hidx[:-1],
                    outputs_oidx[:-1],
                    outputs_action[:-1],
                    outputs_tgt[:-1])]