import torch import numpy as np def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) def compute_overlap(a, b): if type(a) == torch.Tensor: if len(a.shape) == 2: area = (b[:, 2] - b[:, 0] + 1) * (b[:, 3] - b[:, 1] + 1) iw = torch.min(a[:, 2].unsqueeze(dim=1), b[:, 2]) - torch.max(a[:, 0].unsqueeze(dim=1), b[:, 0]) ih = torch.min(a[:, 3].unsqueeze(dim=1), b[:, 3]) - torch.max(a[:, 1].unsqueeze(dim=1), b[:, 1]) iw[iw<0] = 0 ih[ih<0] = 0 ua = torch.unsqueeze((a[:, 2] - a[:, 0] + 1) * (a[:, 3] - a[:, 1] + 1), dim=1) + area - iw * ih ua[ua < 1e-8] = 1e-8 intersection = iw * ih return intersection / ua elif type(a) == np.ndarray: if len(a.shape) == 2: area = np.expand_dims((b[:, 2] - b[:, 0] + 1) * (b[:, 3] - b[:, 1] + 1), axis=0) #(1, K) iw = np.minimum(np.expand_dims(a[:, 2], axis=1), np.expand_dims(b[:, 2], axis=0)) \ - np.maximum(np.expand_dims(a[:, 0], axis=1), np.expand_dims(b[:, 0], axis=0)) \ + 1 ih = np.minimum(np.expand_dims(a[:, 3], axis=1), np.expand_dims(b[:, 3], axis=0)) \ - np.maximum(np.expand_dims(a[:, 1], axis=1), np.expand_dims(b[:, 1], axis=0)) \ + 1 iw[iw<0] = 0 # (N, K) ih[ih<0] = 0 # (N, K) intersection = iw * ih ua = np.expand_dims((a[:, 2] - a[:, 0] + 1) * (a[:, 3] - a[:, 1] + 1), axis=1) + area - intersection ua[ua < 1e-8] = 1e-8 return intersection / ua elif len(a.shape) == 1: area = np.expand_dims((b[:, 2] - b[:, 0] + 1) * (b[:, 3] - b[:, 1] + 1), axis=0) #(1, K) iw = np.minimum(np.expand_dims([a[2]], axis=1), np.expand_dims(b[:, 2], axis=0)) \ - np.maximum(np.expand_dims([a[0]], axis=1), np.expand_dims(b[:, 0], axis=0)) ih = np.minimum(np.expand_dims([a[3]], axis=1), np.expand_dims(b[:, 3], axis=0)) \ - np.maximum(np.expand_dims([a[1]], axis=1), np.expand_dims(b[:, 1], axis=0)) iw[iw<0] = 0 # (N, K) ih[ih<0] = 0 # (N, K) ua = np.expand_dims([(a[2] - a[0] + 1) * (a[3] - a[1] + 1)], axis=1) + area - iw * ih ua[ua < 1e-8] = 1e-8 intersection = iw * ih return intersection / ua def _compute_ap(recall, precision): """ Compute the average precision, given the recall and precision curves. Code originally from https://github.com/rbgirshick/py-faster-rcnn. # Arguments recall: The recall curve (list). precision: The precision curve (list). # Returns The average precision as computed in py-faster-rcnn. """ # correct AP calculation # first append sentinel values at the end mrec = np.concatenate(([0.], recall, [1.])) mpre = np.concatenate(([0.], precision, [0.])) # compute the precision envelope for i in range(mpre.size - 1, 0, -1): mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) # to calculate area under PR curve, look for points # where X axis (recall) changes value i = np.where(mrec[1:] != mrec[:-1])[0] # and sum (\Delta recall) * prec ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) return ap