Create app3.py
Browse files
app3.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import streamlit as st
|
3 |
+
import tempfile
|
4 |
+
import whisper
|
5 |
+
from transformers import pipeline
|
6 |
+
import plotly.express as px
|
7 |
+
import torch
|
8 |
+
import logging
|
9 |
+
import warnings
|
10 |
+
import shutil
|
11 |
+
|
12 |
+
# Suppress warnings for a clean console
|
13 |
+
logging.getLogger("torch").setLevel(logging.CRITICAL)
|
14 |
+
logging.getLogger("transformers").setLevel(logging.CRITICAL)
|
15 |
+
warnings.filterwarnings("ignore")
|
16 |
+
os.environ["TOKENIZERS_PARALLELISM"] = "false"
|
17 |
+
torch.device("cpu")
|
18 |
+
|
19 |
+
# Set Streamlit app layout
|
20 |
+
st.set_page_config(layout="wide", page_title="Voice Based Sentiment Analysis")
|
21 |
+
|
22 |
+
# Interface design
|
23 |
+
st.title("ποΈ Voice Based Sentiment Analysis")
|
24 |
+
st.write("Detect emotions, sentiment, and sarcasm from your voice with high accuracy.")
|
25 |
+
|
26 |
+
# Sidebar for file upload
|
27 |
+
st.sidebar.title("Audio Input")
|
28 |
+
st.sidebar.write("Upload a WAV file for transcription and detailed analysis.")
|
29 |
+
audio_file = st.sidebar.file_uploader("Choose an audio file", type=["wav"], help="Supports WAV format only.")
|
30 |
+
upload_button = st.sidebar.button("Analyze", help="Click to process the uploaded audio.")
|
31 |
+
|
32 |
+
# Check if FFmpeg is available
|
33 |
+
def check_ffmpeg():
|
34 |
+
return shutil.which("ffmpeg") is not None
|
35 |
+
|
36 |
+
# Emotion Detection Function
|
37 |
+
@st.cache_resource
|
38 |
+
def get_emotion_classifier():
|
39 |
+
emotion_model = "bhadresh-savani/distilbert-base-uncased-emotion"
|
40 |
+
return pipeline("text-classification", model=emotion_model, top_k=None, device=-1)
|
41 |
+
|
42 |
+
def perform_emotion_detection(text):
|
43 |
+
try:
|
44 |
+
emotion_classifier = get_emotion_classifier()
|
45 |
+
emotion_results = emotion_classifier(text)[0]
|
46 |
+
emotion_map = {"anger": "π‘", "fear": "π¨", "joy": "π", "love": "β€οΈ", "sadness": "π’", "surprise": "π²"}
|
47 |
+
emotions_dict = {result['label']: result['score'] for result in emotion_results}
|
48 |
+
top_emotion = max(emotions_dict, key=emotions_dict.get)
|
49 |
+
sentiment_map = {"joy": "POSITIVE", "love": "POSITIVE", "anger": "NEGATIVE", "fear": "NEGATIVE", "sadness": "NEGATIVE", "surprise": "NEUTRAL"}
|
50 |
+
sentiment = sentiment_map.get(top_emotion, "NEUTRAL")
|
51 |
+
return emotions_dict, top_emotion, emotion_map, sentiment
|
52 |
+
except Exception as e:
|
53 |
+
st.error(f"Emotion detection failed: {str(e)}")
|
54 |
+
return {}, "unknown", {}, "UNKNOWN"
|
55 |
+
|
56 |
+
# Sarcasm Detection Function
|
57 |
+
@st.cache_resource
|
58 |
+
def get_sarcasm_classifier():
|
59 |
+
sarcasm_model = "cardiffnlp/twitter-roberta-base-irony"
|
60 |
+
return pipeline("text-classification", model=sarcasm_model, device=-1)
|
61 |
+
|
62 |
+
def perform_sarcasm_detection(text):
|
63 |
+
try:
|
64 |
+
sarcasm_classifier = get_sarcasm_classifier()
|
65 |
+
result = sarcasm_classifier(text)[0]
|
66 |
+
is_sarcastic = result['label'] == "LABEL_1"
|
67 |
+
sarcasm_score = result['score'] if is_sarcastic else 1 - result['score']
|
68 |
+
return is_sarcastic, sarcasm_score
|
69 |
+
except Exception as e:
|
70 |
+
st.error(f"Sarcasm detection failed: {str(e)}")
|
71 |
+
return False, 0.0
|
72 |
+
|
73 |
+
# Transcription Function with Whisper
|
74 |
+
@st.cache_resource
|
75 |
+
def get_whisper_model():
|
76 |
+
return whisper.load_model("base")
|
77 |
+
|
78 |
+
def transcribe_audio(audio_file):
|
79 |
+
if not check_ffmpeg():
|
80 |
+
st.error("FFmpeg is not installed or not found in PATH. Please install FFmpeg and add it to your system PATH.")
|
81 |
+
st.markdown("**Instructions to install FFmpeg on Windows:**\n"
|
82 |
+
"1. Download FFmpeg from [https://www.gyan.dev/ffmpeg/builds/](https://www.gyan.dev/ffmpeg/builds/) (e.g., `ffmpeg-release-essentials.zip`).\n"
|
83 |
+
"2. Extract the ZIP to a folder (e.g., `C:\\ffmpeg`).\n"
|
84 |
+
"3. Add `C:\\ffmpeg\\bin` to your system PATH:\n"
|
85 |
+
" - Right-click 'This PC' > 'Properties' > 'Advanced system settings' > 'Environment Variables'.\n"
|
86 |
+
" - Under 'System variables', edit 'Path' and add the new path.\n"
|
87 |
+
"4. Restart your terminal and rerun the app.")
|
88 |
+
return ""
|
89 |
+
|
90 |
+
try:
|
91 |
+
model = get_whisper_model()
|
92 |
+
# Save uploaded file to a temporary location
|
93 |
+
temp_dir = tempfile.gettempdir()
|
94 |
+
temp_file_path = os.path.join(temp_dir, "temp_audio.wav")
|
95 |
+
with open(temp_file_path, "wb") as f:
|
96 |
+
f.write(audio_file.getvalue())
|
97 |
+
|
98 |
+
# Verify file exists
|
99 |
+
if not os.path.exists(temp_file_path):
|
100 |
+
st.error(f"Temporary file not created at {temp_file_path}. Check write permissions.")
|
101 |
+
return ""
|
102 |
+
|
103 |
+
# Transcribe using Whisper
|
104 |
+
result = model.transcribe(temp_file_path)
|
105 |
+
|
106 |
+
# Clean up temporary file
|
107 |
+
if os.path.exists(temp_file_path):
|
108 |
+
os.remove(temp_file_path)
|
109 |
+
return result["text"]
|
110 |
+
except Exception as e:
|
111 |
+
st.error(f"Transcription failed: {str(e)}")
|
112 |
+
return ""
|
113 |
+
|
114 |
+
# Main App Logic
|
115 |
+
def main():
|
116 |
+
if audio_file and upload_button:
|
117 |
+
st.audio(audio_file.getvalue(), format='audio/wav')
|
118 |
+
st.caption("π§ Uploaded Audio Playback")
|
119 |
+
|
120 |
+
with st.spinner('Analyzing audio with advanced precision...'):
|
121 |
+
transcribed_text = transcribe_audio(audio_file)
|
122 |
+
if not transcribed_text:
|
123 |
+
return
|
124 |
+
|
125 |
+
emotions_dict, top_emotion, emotion_map, sentiment = perform_emotion_detection(transcribed_text)
|
126 |
+
is_sarcastic, sarcasm_score = perform_sarcasm_detection(transcribed_text)
|
127 |
+
|
128 |
+
st.header("Transcribed Text")
|
129 |
+
st.text_area("Text", transcribed_text, height=150, disabled=True, help="The audio converted to text.")
|
130 |
+
|
131 |
+
st.header("Analysis Results")
|
132 |
+
col1, col2 = st.columns([1, 2])
|
133 |
+
|
134 |
+
with col1:
|
135 |
+
st.subheader("Sentiment")
|
136 |
+
sentiment_icon = "π" if sentiment == "POSITIVE" else "π" if sentiment == "NEGATIVE" else "π"
|
137 |
+
st.markdown(f"**{sentiment_icon} {sentiment.capitalize()}** (Based on {top_emotion})")
|
138 |
+
st.info("Sentiment reflects the dominant emotionβs tone.")
|
139 |
+
|
140 |
+
st.subheader("Sarcasm")
|
141 |
+
sarcasm_icon = "π" if is_sarcastic else "π"
|
142 |
+
sarcasm_text = "Detected" if is_sarcastic else "Not Detected"
|
143 |
+
st.markdown(f"**{sarcasm_icon} {sarcasm_text}** (Score: {sarcasm_score:.3f})")
|
144 |
+
st.info("Score indicates sarcasm confidence (0 to 1).")
|
145 |
+
|
146 |
+
with col2:
|
147 |
+
st.subheader("Emotions")
|
148 |
+
if emotions_dict:
|
149 |
+
st.markdown(f"**Dominant:** {emotion_map.get(top_emotion, 'β')} {top_emotion.capitalize()} (Score: {emotions_dict[top_emotion]:.3f})")
|
150 |
+
sorted_emotions = sorted(emotions_dict.items(), key=lambda x: x[1], reverse=True)
|
151 |
+
emotions = [e[0] for e in sorted_emotions]
|
152 |
+
scores = [e[1] for e in sorted_emotions]
|
153 |
+
fig = px.bar(x=emotions, y=scores, labels={'x': 'Emotion', 'y': 'Score'},
|
154 |
+
title="Emotion Distribution", color=emotions,
|
155 |
+
color_discrete_sequence=px.colors.qualitative.Pastel1)
|
156 |
+
fig.update_layout(yaxis_range=[0, 1], showlegend=False, title_font_size=14)
|
157 |
+
st.plotly_chart(fig, use_container_width=True)
|
158 |
+
else:
|
159 |
+
st.write("No emotions detected.")
|
160 |
+
|
161 |
+
st.info("Emotions drive sentiment here. Sarcasm is analyzed separately for accuracy.")
|
162 |
+
|
163 |
+
elif upload_button and not audio_file:
|
164 |
+
st.sidebar.error("Please upload an audio file first!")
|
165 |
+
|
166 |
+
if __name__ == "__main__":
|
167 |
+
main()
|