Spaces:
Sleeping
Sleeping
import torch | |
import network | |
from einops import rearrange | |
class ModuleTypeOFT(network.ModuleType): | |
def create_module(self, net: network.Network, weights: network.NetworkWeights): | |
if all(x in weights.w for x in ["oft_blocks"]) or all(x in weights.w for x in ["oft_diag"]): | |
return NetworkModuleOFT(net, weights) | |
return None | |
# Supports both kohya-ss' implementation of COFT https://github.com/kohya-ss/sd-scripts/blob/main/networks/oft.py | |
# and KohakuBlueleaf's implementation of OFT/COFT https://github.com/KohakuBlueleaf/LyCORIS/blob/dev/lycoris/modules/diag_oft.py | |
class NetworkModuleOFT(network.NetworkModule): | |
def __init__(self, net: network.Network, weights: network.NetworkWeights): | |
super().__init__(net, weights) | |
self.lin_module = None | |
self.org_module: list[torch.Module] = [self.sd_module] | |
self.scale = 1.0 | |
self.is_R = False | |
self.is_boft = False | |
# kohya-ss/New LyCORIS OFT/BOFT | |
if "oft_blocks" in weights.w.keys(): | |
self.oft_blocks = weights.w["oft_blocks"] # (num_blocks, block_size, block_size) | |
self.alpha = weights.w.get("alpha", None) # alpha is constraint | |
self.dim = self.oft_blocks.shape[0] # lora dim | |
# Old LyCORIS OFT | |
elif "oft_diag" in weights.w.keys(): | |
self.is_R = True | |
self.oft_blocks = weights.w["oft_diag"] | |
# self.alpha is unused | |
self.dim = self.oft_blocks.shape[1] # (num_blocks, block_size, block_size) | |
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear] | |
is_conv = type(self.sd_module) in [torch.nn.Conv2d] | |
is_other_linear = type(self.sd_module) in [torch.nn.MultiheadAttention] # unsupported | |
if is_linear: | |
self.out_dim = self.sd_module.out_features | |
elif is_conv: | |
self.out_dim = self.sd_module.out_channels | |
elif is_other_linear: | |
self.out_dim = self.sd_module.embed_dim | |
# LyCORIS BOFT | |
if self.oft_blocks.dim() == 4: | |
self.is_boft = True | |
self.rescale = weights.w.get('rescale', None) | |
if self.rescale is not None and not is_other_linear: | |
self.rescale = self.rescale.reshape(-1, *[1]*(self.org_module[0].weight.dim() - 1)) | |
self.num_blocks = self.dim | |
self.block_size = self.out_dim // self.dim | |
self.constraint = (0 if self.alpha is None else self.alpha) * self.out_dim | |
if self.is_R: | |
self.constraint = None | |
self.block_size = self.dim | |
self.num_blocks = self.out_dim // self.dim | |
elif self.is_boft: | |
self.boft_m = self.oft_blocks.shape[0] | |
self.num_blocks = self.oft_blocks.shape[1] | |
self.block_size = self.oft_blocks.shape[2] | |
self.boft_b = self.block_size | |
def calc_updown(self, orig_weight): | |
oft_blocks = self.oft_blocks.to(orig_weight.device) | |
eye = torch.eye(self.block_size, device=oft_blocks.device) | |
if not self.is_R: | |
block_Q = oft_blocks - oft_blocks.transpose(-1, -2) # ensure skew-symmetric orthogonal matrix | |
if self.constraint != 0: | |
norm_Q = torch.norm(block_Q.flatten()) | |
new_norm_Q = torch.clamp(norm_Q, max=self.constraint.to(oft_blocks.device)) | |
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) | |
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse()) | |
R = oft_blocks.to(orig_weight.device) | |
if not self.is_boft: | |
# This errors out for MultiheadAttention, might need to be handled up-stream | |
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) | |
merged_weight = torch.einsum( | |
'k n m, k n ... -> k m ...', | |
R, | |
merged_weight | |
) | |
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') | |
else: | |
# TODO: determine correct value for scale | |
scale = 1.0 | |
m = self.boft_m | |
b = self.boft_b | |
r_b = b // 2 | |
inp = orig_weight | |
for i in range(m): | |
bi = R[i] # b_num, b_size, b_size | |
if i == 0: | |
# Apply multiplier/scale and rescale into first weight | |
bi = bi * scale + (1 - scale) * eye | |
inp = rearrange(inp, "(c g k) ... -> (c k g) ...", g=2, k=2**i * r_b) | |
inp = rearrange(inp, "(d b) ... -> d b ...", b=b) | |
inp = torch.einsum("b i j, b j ... -> b i ...", bi, inp) | |
inp = rearrange(inp, "d b ... -> (d b) ...") | |
inp = rearrange(inp, "(c k g) ... -> (c g k) ...", g=2, k=2**i * r_b) | |
merged_weight = inp | |
# Rescale mechanism | |
if self.rescale is not None: | |
merged_weight = self.rescale.to(merged_weight) * merged_weight | |
updown = merged_weight.to(orig_weight.device) - orig_weight.to(merged_weight.dtype) | |
output_shape = orig_weight.shape | |
return self.finalize_updown(updown, orig_weight, output_shape) | |