Nimzi's picture
Update app.py
a5b7aa4 verified
raw
history blame
7.87 kB
import streamlit as st
import requests
from transformers import pipeline
from deepface import DeepFace
from PIL import Image
import io
import re
import base64
# Load Fake News Detection Model from Hugging Face
fake_news_pipeline = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-fake-news-detection")
def classify_text(news_text):
"""Classifies text as Fake or Real with accuracy."""
result = fake_news_pipeline(news_text)[0]
label = result['label'].lower()
score = result['score'] * 100 # Convert to percentage
return ("Fake" if label == "fake" else "Real"), round(score, 2)
def analyze_image(image):
"""Analyzes image using DeepFace and Google Reverse Image Search."""
try:
analysis = DeepFace.analyze(image, actions=['emotion'])
dominant_emotion = analysis[0]['dominant_emotion']
reverse_search_url = reverse_image_search(image)
return f"Analysis: {dominant_emotion}", 90.0, reverse_search_url # Dummy Accuracy
except Exception as e:
return f"Error: {str(e)}", 0.0, None
def reverse_image_search(image):
"""Creates a Google Reverse Image Search link for verification."""
buffered = io.BytesIO()
image.save(buffered, format="PNG")
encoded_img = base64.b64encode(buffered.getvalue()).decode()
return f"https://www.google.com/searchbyimage?image_url=data:image/png;base64,{encoded_img}"
def verify_news(news_text):
"""Searches trusted fact-checking websites for news verification."""
sources = [
("BBC News", "https://www.bbc.com/news"),
("CNN", "https://www.cnn.com"),
("Reuters", "https://www.reuters.com"),
("FactCheck.org", "https://www.factcheck.org"),
("Snopes", "https://www.snopes.com"),
("PolitiFact", "https://www.politifact.com"),
("Google Search", f"https://www.google.com/search?q={'+'.join(news_text.split())}")
]
return sources
def extract_video_id(video_url):
"""Extracts the video ID from a YouTube URL."""
pattern = r"(?:https?:\/\/)?(?:www\.)?(?:youtube\.com\/(?:[^\/\n\s]+\/\S+\/|(?:v|e(?:mbed)?)\/|.*[?&]v=)|youtu\.be\/)([a-zA-Z0-9_-]{11})"
match = re.search(pattern, video_url)
return match.group(1) if match else None
def fetch_video_metadata(video_url):
"""Fetches video metadata and runs Fake News detection on it."""
video_id = extract_video_id(video_url)
if not video_id:
return "Invalid Video URL", 0.0, None
api_key = "YOUR_YOUTUBE_API_KEY" # Replace with a valid YouTube API Key
metadata_url = f"https://www.googleapis.com/youtube/v3/videos?id={video_id}&part=snippet&key={api_key}"
response = requests.get(metadata_url)
if response.status_code == 200:
data = response.json()
if "items" in data and len(data["items"]) > 0:
video_details = data["items"][0]["snippet"]
video_title = video_details["title"]
video_description = video_details["description"]
combined_text = video_title + " " + video_description
# Classify the video metadata text
result, accuracy = classify_text(combined_text)
verification_links = verify_news(video_title)
return result, accuracy, verification_links
return "Unknown", 0.0, None
# Streamlit UI
st.set_page_config(page_title="Fake News Detector", layout="wide")
st.title("πŸ“° Fake News Detector")
# πŸ”Ή Three Separate Sections for Input
st.subheader("πŸ” Choose an Input Type")
col1, col2, col3 = st.columns(3)
# πŸ”Ή Text Input Section
with col1:
st.markdown("### πŸ“„ Text Input")
news_text = st.text_area("Enter the news content to check:", height=150)
analyze_text_clicked = st.button("Analyze News")
if analyze_text_clicked:
if not news_text.strip():
st.warning("Please enter some text.")
else:
result, accuracy = classify_text(news_text)
verification_links = verify_news(news_text)
st.session_state["text_result"] = result
st.session_state["text_accuracy"] = accuracy
st.session_state["text_verification"] = verification_links
# πŸ”Ή Image Upload Section
with col2:
st.markdown("### πŸ–ΌοΈ Image Upload")
uploaded_image = st.file_uploader("Upload a news image", type=["jpg", "png", "jpeg"])
analyze_image_clicked = st.button("Analyze Image")
if uploaded_image and analyze_image_clicked:
image = Image.open(uploaded_image)
result, accuracy, reverse_search_url = analyze_image(image)
st.session_state["image_result"] = result
st.session_state["image_accuracy"] = accuracy
st.session_state["image_search_url"] = reverse_search_url
st.session_state["news_image"] = image # Store Image for Display
# πŸ”Ή Video Link Section
with col3:
st.markdown("### πŸŽ₯ Video Link")
video_url = st.text_input("Enter the video link:")
analyze_video_clicked = st.button("Analyze Video")
if analyze_video_clicked:
if not video_url.strip():
st.warning("Please enter a valid video link.")
else:
result, accuracy, verification_links = fetch_video_metadata(video_url)
st.session_state["video_result"] = result
st.session_state["video_accuracy"] = accuracy
st.session_state["video_verification"] = verification_links
st.session_state["video_url"] = video_url # Store Video URL for Display
# πŸ”Ή Results Section
st.subheader("πŸ“Š Analysis Results")
# πŸ”Ή Text Result
if "text_result" in st.session_state:
result = st.session_state["text_result"]
accuracy = st.session_state["text_accuracy"]
if result == "Fake":
st.error(f"❌ This news is **Fake**! (Accuracy: {accuracy}%)", icon="⚠️")
else:
st.success(f"βœ… This news is **Real**! (Accuracy: {accuracy}%)", icon="βœ…")
st.subheader("πŸ”Ž Trusted Fact-Checking Sources")
for name, link in st.session_state["text_verification"]:
st.markdown(f"[πŸ”— {name}]({link})")
# πŸ”Ή Image Analysis Result Section
if "image_result" in st.session_state:
st.image(st.session_state["news_image"], caption="Uploaded Image", use_column_width=True)
if st.session_state["image_result"] == "Fake":
st.error(f"❌ **This image is likely Fake!** (Accuracy: {st.session_state['image_accuracy']}%)")
elif st.session_state["image_result"] == "Real":
st.success(f"βœ… **This image is likely Real!** (Accuracy: {st.session_state['image_accuracy']}%)")
else:
st.warning("⚠️ Unable to verify the authenticity of this image.")
# βœ… Add verification links
if st.session_state["image_verification"]:
st.subheader("πŸ”Ž Trusted Fact-Checking Sources")
for name, link in st.session_state["image_verification"]:
st.markdown(f"[πŸ”— {name}]({link})")
else:
st.warning("No verification sources available for this image.")
# πŸ”Ή Video Result
if "video_result" in st.session_state:
st.video(st.session_state["video_url"])
if st.session_state["video_result"] == "Fake":
st.error(f"❌ **This video is Fake!** (Accuracy: {st.session_state['video_accuracy']}%)")
elif st.session_state["video_result"] == "Real":
st.success(f"βœ… **This video is Real!** (Accuracy: {st.session_state['video_accuracy']}%)")
else:
st.warning("⚠️ Unable to verify the authenticity of this video.")
# βœ… Check if verification links exist before iterating
if st.session_state["video_verification"]:
st.subheader("πŸ”Ž Trusted Fact-Checking Sources")
for name, link in st.session_state["video_verification"]:
st.markdown(f"[πŸ”— {name}]({link})")
else:
st.warning("No verification sources available for this video.")