Spaces:
Build error
Build error
# Adapted from https://docs.streamlit.io/knowledge-base/tutorials/build-conversational-apps#build-a-simple-chatbot-gui-with-streaming | |
import os | |
import base64 | |
import gc | |
import random | |
import tempfile | |
import time | |
import uuid | |
from IPython.display import Markdown, display | |
import streamlit as st | |
import torch | |
import time | |
import numpy as np | |
from tqdm import tqdm | |
from pdf2image import convert_from_path | |
from rag_code import EmbedData, QdrantVDB_QB, Retriever, RAG | |
collection_name = "multimodal_rag_with_deepseek-new" | |
if "id" not in st.session_state: | |
st.session_state.id = uuid.uuid4() | |
st.session_state.file_cache = {} | |
session_id = st.session_state.id | |
def reset_chat(): | |
st.session_state.messages = [] | |
st.session_state.context = None | |
gc.collect() | |
def display_pdf(file): | |
# Opening file from file path | |
st.markdown("### PDF Preview") | |
base64_pdf = base64.b64encode(file.read()).decode("utf-8") | |
# Embedding PDF in HTML | |
pdf_display = f"""<iframe src="data:application/pdf;base64,{base64_pdf}" width="400" height="100%" type="application/pdf" | |
style="height:100vh; width:100%" | |
> | |
</iframe>""" | |
# Displaying File | |
st.markdown(pdf_display, unsafe_allow_html=True) | |
with st.sidebar: | |
st.header(f"Add your documents!") | |
uploaded_file = st.file_uploader("Choose your `.pdf` file", type="pdf") | |
if uploaded_file: | |
try: | |
with tempfile.TemporaryDirectory() as temp_dir: | |
file_path = os.path.join(temp_dir, uploaded_file.name) | |
with open(file_path, "wb") as f: | |
f.write(uploaded_file.getvalue()) | |
file_key = f"{session_id}-{uploaded_file.name}" | |
st.write("Indexing your document...") | |
if file_key not in st.session_state.get('file_cache', {}): | |
# Store Pdf with convert_from_path function | |
images = convert_from_path(file_path) | |
for i in range(len(images)): | |
# Save pages as images in the pdf | |
images[i].save('./images/page'+ str(i) +'.jpg', 'JPEG') | |
# embed data | |
embeddata = EmbedData() | |
embeddata.embed(images) | |
# set up vector database | |
qdrant_vdb = QdrantVDB_QB(collection_name=collection_name, | |
vector_dim=128) | |
qdrant_vdb.define_client() | |
qdrant_vdb.create_collection() | |
qdrant_vdb.ingest_data(embeddata=embeddata) | |
# set up retriever | |
retriever = Retriever(vector_db=qdrant_vdb, embeddata=embeddata) | |
# set up rag | |
query_engine = RAG(retriever=retriever) | |
st.session_state.file_cache[file_key] = query_engine | |
else: | |
query_engine = st.session_state.file_cache[file_key] | |
# Inform the user that the file is processed and Display the PDF uploaded | |
st.success("Ready to Chat!") | |
display_pdf(uploaded_file) | |
except Exception as e: | |
st.error(f"An error occurred: {e}") | |
st.stop() | |
col1, col2 = st.columns([6, 1]) | |
with col1: | |
# st.header(""" | |
# # Agentic RAG powered by <img src="data:image/png;base64,{}" width="170" style="vertical-align: -3px;"> | |
# """.format(base64.b64encode(open("assets/deep-seek.png", "rb").read()).decode())) | |
st.markdown(""" | |
# Multimodal RAG powered by <img src="data:image/png;base64,{}" width="170" style="vertical-align: -3px;"> Janus""".format(base64.b64encode(open("assets/deep-seek.png", "rb").read()).decode()), unsafe_allow_html=True) | |
with col2: | |
st.button("Clear ↺", on_click=reset_chat) | |
# Initialize chat history | |
if "messages" not in st.session_state: | |
reset_chat() | |
# Display chat messages from history on app rerun | |
for message in st.session_state.messages: | |
with st.chat_message(message["role"]): | |
st.markdown(message["content"]) | |
# Accept user input | |
if prompt := st.chat_input("What's up?"): | |
# Add user message to chat history | |
st.session_state.messages.append({"role": "user", "content": prompt}) | |
# Display user message in chat message container | |
with st.chat_message("user"): | |
st.markdown(prompt) | |
# Display assistant response in chat message container | |
with st.chat_message("assistant"): | |
message_placeholder = st.empty() | |
full_response = "" | |
streaming_response = query_engine.query(prompt) | |
for chunk in streaming_response: | |
full_response += chunk | |
message_placeholder.markdown(full_response + "▌") | |
time.sleep(0.01) | |
message_placeholder.markdown(full_response) | |
# Add assistant response to chat history | |
st.session_state.messages.append({"role": "assistant", "content": full_response}) |