NomiDecent commited on
Commit
3608487
·
verified ·
1 Parent(s): 964b3bc

Create rag_code.py

Browse files
Files changed (1) hide show
  1. rag_code.py +211 -0
rag_code.py ADDED
@@ -0,0 +1,211 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ from qdrant_client import models
3
+ from qdrant_client import QdrantClient
4
+ from colpali_engine.models import ColPali, ColPaliProcessor
5
+ from Janus.janus.models import MultiModalityCausalLM, VLChatProcessor
6
+ from Janus.janus.utils.io import load_pil_images
7
+ from transformers import AutoModelForCausalLM
8
+ import base64
9
+ from io import BytesIO
10
+ from tqdm import tqdm
11
+
12
+ def batch_iterate(lst, batch_size):
13
+ """Yield successive n-sized chunks from lst."""
14
+ for i in range(0, len(lst), batch_size):
15
+ yield lst[i : i + batch_size]
16
+
17
+ def image_to_base64(image):
18
+ buffered = BytesIO()
19
+
20
+ image.save(buffered, format="JPEG")
21
+
22
+ return base64.b64encode(buffered.getvalue()).decode("utf-8")
23
+
24
+ class EmbedData:
25
+
26
+ def __init__(self, embed_model_name="vidore/colpali-v1.2", batch_size = 4):
27
+ self.embed_model_name = embed_model_name
28
+ self.embed_model, self.processor = self._load_embed_model()
29
+ self.batch_size = batch_size
30
+ self.embeddings = []
31
+
32
+ def _load_embed_model(self):
33
+ embed_model = ColPali.from_pretrained(
34
+ self.embed_model_name,
35
+ torch_dtype=torch.bfloat16,
36
+ device_map="mps",
37
+ trust_remote_code=True,
38
+ cache_dir="./Janus/hf_cache"
39
+ )
40
+
41
+ processor = ColPaliProcessor.from_pretrained(self.embed_model_name)
42
+ return embed_model, processor
43
+
44
+ def get_query_embedding(self, query):
45
+
46
+ with torch.no_grad():
47
+ query = self.processor.process_queries([query]).to(self.embed_model.device)
48
+
49
+ query_embedding = self.embed_model(**query)
50
+
51
+ return query_embedding[0].cpu().float().numpy().tolist()
52
+
53
+ def generate_embedding(self, images):
54
+ with torch.no_grad():
55
+ batch_images = self.processor.process_images(images).to(self.embed_model.device)
56
+ image_embeddings = self.embed_model(**batch_images).cpu().float().numpy().tolist()
57
+
58
+ return image_embeddings
59
+
60
+ def embed(self, images):
61
+
62
+ self.images = images
63
+ self.all_embeddings = []
64
+
65
+ for batch_images in tqdm(batch_iterate(images, self.batch_size), desc="Generating embeddings"):
66
+ batch_embeddings = self.generate_embedding(batch_images)
67
+ self.embeddings.extend(batch_embeddings)
68
+
69
+ class QdrantVDB_QB:
70
+
71
+ def __init__(self, collection_name, vector_dim = 128, batch_size=4):
72
+ self.collection_name = collection_name
73
+ self.batch_size = batch_size
74
+ self.vector_dim = vector_dim
75
+
76
+ def define_client(self):
77
+
78
+ self.client = QdrantClient(url="http://localhost:6333", prefer_grpc=True)
79
+
80
+ def create_collection(self):
81
+
82
+ if not self.client.collection_exists(collection_name=self.collection_name):
83
+
84
+ self.client.create_collection(
85
+ collection_name=self.collection_name,
86
+ on_disk_payload=True,
87
+ vectors_config=models.VectorParams(
88
+ size=self.vector_dim,
89
+ distance=models.Distance.COSINE,
90
+ on_disk=True,
91
+ multivector_config=models.MultiVectorConfig(
92
+ comparator=models.MultiVectorComparator.MAX_SIM
93
+ ),
94
+ ),
95
+ )
96
+
97
+ def ingest_data(self, embeddata):
98
+
99
+ for i, batch_embeddings in tqdm(enumerate(batch_iterate(embeddata.embeddings, self.batch_size)), desc="Ingesting data"):
100
+
101
+ points = []
102
+ for j, embedding in enumerate(batch_embeddings):
103
+
104
+ image_bs64 = image_to_base64(embeddata.images[i*self.batch_size + j])
105
+
106
+ current_point = models.PointStruct(id=i*self.batch_size + j,
107
+ vector=embedding,
108
+ payload={"image": image_bs64})
109
+
110
+ points.append(current_point)
111
+
112
+ self.client.upsert(collection_name=self.collection_name, points=points, wait=True)
113
+
114
+ class Retriever:
115
+
116
+ def __init__(self, vector_db, embeddata):
117
+
118
+ self.vector_db = vector_db
119
+ self.embeddata = embeddata
120
+
121
+ def search(self, query):
122
+ query_embedding = self.embeddata.get_query_embedding(query)
123
+
124
+ query_result = self.vector_db.client.query_points(collection_name=self.vector_db.collection_name,
125
+ query=query_embedding,
126
+ limit=4,
127
+ search_params=models.SearchParams(
128
+ quantization=models.QuantizationSearchParams(
129
+ ignore=True,
130
+ rescore=True,
131
+ oversampling=2.0
132
+ )
133
+ )
134
+ )
135
+
136
+ return query_result
137
+
138
+ class RAG:
139
+
140
+ def __init__(self,
141
+ retriever,
142
+ llm_name = "deepseek-ai/Janus-Pro-1B"
143
+ ):
144
+
145
+ self.llm_name = llm_name
146
+ self._setup_llm()
147
+ self.retriever = retriever
148
+
149
+ def _setup_llm(self):
150
+
151
+ self.vl_chat_processor = VLChatProcessor.from_pretrained(self.llm_name, cache_dir="./Janus/hf_cache")
152
+ self.tokenizer = self.vl_chat_processor.tokenizer
153
+
154
+ self.vl_gpt = AutoModelForCausalLM.from_pretrained(
155
+ self.llm_name, trust_remote_code=True, cache_dir="./Janus/hf_cache"
156
+ ).to(torch.bfloat16).eval()
157
+
158
+ def generate_context(self, query):
159
+
160
+ result = self.retriever.search(query)
161
+ return f"./images/page{result.points[0].id}.jpg"
162
+
163
+ def query(self, query):
164
+ image_context = self.generate_context(query=query)
165
+
166
+ qa_prompt_tmpl_str = f"""The user has asked the following question:
167
+
168
+ ---------------------
169
+
170
+ Query: {query}
171
+
172
+ ---------------------
173
+
174
+ Some images are available to you
175
+ for this question. You have
176
+ to understand these images thoroughly and
177
+ extract all relevant information that will
178
+ help you answer the query.
179
+
180
+ ---------------------
181
+ """
182
+
183
+ conversation = [
184
+ {
185
+ "role": "User",
186
+ "content": f"<image_placeholder> \n {qa_prompt_tmpl_str}",
187
+ "images": [image_context],
188
+ },
189
+ {"role": "Assistant", "content": ""},
190
+ ]
191
+
192
+ pil_images = load_pil_images(conversation)
193
+ prepare_inputs = self.vl_chat_processor(
194
+ conversations=conversation, images=pil_images, force_batchify=True
195
+ ).to(self.vl_gpt.device)
196
+
197
+ inputs_embeds = self.vl_gpt.prepare_inputs_embeds(**prepare_inputs)
198
+
199
+ outputs = self.vl_gpt.language_model.generate(
200
+ inputs_embeds=inputs_embeds,
201
+ attention_mask=prepare_inputs.attention_mask,
202
+ pad_token_id=self.tokenizer.eos_token_id,
203
+ bos_token_id=self.tokenizer.bos_token_id,
204
+ eos_token_id=self.tokenizer.eos_token_id,
205
+ max_new_tokens=512,
206
+ do_sample=False,
207
+ use_cache=True,
208
+ )
209
+ streaming_response = self.tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
210
+
211
+ return streaming_response