Spaces:
Build error
Build error
Create rag_code.py
Browse files- rag_code.py +211 -0
rag_code.py
ADDED
@@ -0,0 +1,211 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from qdrant_client import models
|
3 |
+
from qdrant_client import QdrantClient
|
4 |
+
from colpali_engine.models import ColPali, ColPaliProcessor
|
5 |
+
from Janus.janus.models import MultiModalityCausalLM, VLChatProcessor
|
6 |
+
from Janus.janus.utils.io import load_pil_images
|
7 |
+
from transformers import AutoModelForCausalLM
|
8 |
+
import base64
|
9 |
+
from io import BytesIO
|
10 |
+
from tqdm import tqdm
|
11 |
+
|
12 |
+
def batch_iterate(lst, batch_size):
|
13 |
+
"""Yield successive n-sized chunks from lst."""
|
14 |
+
for i in range(0, len(lst), batch_size):
|
15 |
+
yield lst[i : i + batch_size]
|
16 |
+
|
17 |
+
def image_to_base64(image):
|
18 |
+
buffered = BytesIO()
|
19 |
+
|
20 |
+
image.save(buffered, format="JPEG")
|
21 |
+
|
22 |
+
return base64.b64encode(buffered.getvalue()).decode("utf-8")
|
23 |
+
|
24 |
+
class EmbedData:
|
25 |
+
|
26 |
+
def __init__(self, embed_model_name="vidore/colpali-v1.2", batch_size = 4):
|
27 |
+
self.embed_model_name = embed_model_name
|
28 |
+
self.embed_model, self.processor = self._load_embed_model()
|
29 |
+
self.batch_size = batch_size
|
30 |
+
self.embeddings = []
|
31 |
+
|
32 |
+
def _load_embed_model(self):
|
33 |
+
embed_model = ColPali.from_pretrained(
|
34 |
+
self.embed_model_name,
|
35 |
+
torch_dtype=torch.bfloat16,
|
36 |
+
device_map="mps",
|
37 |
+
trust_remote_code=True,
|
38 |
+
cache_dir="./Janus/hf_cache"
|
39 |
+
)
|
40 |
+
|
41 |
+
processor = ColPaliProcessor.from_pretrained(self.embed_model_name)
|
42 |
+
return embed_model, processor
|
43 |
+
|
44 |
+
def get_query_embedding(self, query):
|
45 |
+
|
46 |
+
with torch.no_grad():
|
47 |
+
query = self.processor.process_queries([query]).to(self.embed_model.device)
|
48 |
+
|
49 |
+
query_embedding = self.embed_model(**query)
|
50 |
+
|
51 |
+
return query_embedding[0].cpu().float().numpy().tolist()
|
52 |
+
|
53 |
+
def generate_embedding(self, images):
|
54 |
+
with torch.no_grad():
|
55 |
+
batch_images = self.processor.process_images(images).to(self.embed_model.device)
|
56 |
+
image_embeddings = self.embed_model(**batch_images).cpu().float().numpy().tolist()
|
57 |
+
|
58 |
+
return image_embeddings
|
59 |
+
|
60 |
+
def embed(self, images):
|
61 |
+
|
62 |
+
self.images = images
|
63 |
+
self.all_embeddings = []
|
64 |
+
|
65 |
+
for batch_images in tqdm(batch_iterate(images, self.batch_size), desc="Generating embeddings"):
|
66 |
+
batch_embeddings = self.generate_embedding(batch_images)
|
67 |
+
self.embeddings.extend(batch_embeddings)
|
68 |
+
|
69 |
+
class QdrantVDB_QB:
|
70 |
+
|
71 |
+
def __init__(self, collection_name, vector_dim = 128, batch_size=4):
|
72 |
+
self.collection_name = collection_name
|
73 |
+
self.batch_size = batch_size
|
74 |
+
self.vector_dim = vector_dim
|
75 |
+
|
76 |
+
def define_client(self):
|
77 |
+
|
78 |
+
self.client = QdrantClient(url="http://localhost:6333", prefer_grpc=True)
|
79 |
+
|
80 |
+
def create_collection(self):
|
81 |
+
|
82 |
+
if not self.client.collection_exists(collection_name=self.collection_name):
|
83 |
+
|
84 |
+
self.client.create_collection(
|
85 |
+
collection_name=self.collection_name,
|
86 |
+
on_disk_payload=True,
|
87 |
+
vectors_config=models.VectorParams(
|
88 |
+
size=self.vector_dim,
|
89 |
+
distance=models.Distance.COSINE,
|
90 |
+
on_disk=True,
|
91 |
+
multivector_config=models.MultiVectorConfig(
|
92 |
+
comparator=models.MultiVectorComparator.MAX_SIM
|
93 |
+
),
|
94 |
+
),
|
95 |
+
)
|
96 |
+
|
97 |
+
def ingest_data(self, embeddata):
|
98 |
+
|
99 |
+
for i, batch_embeddings in tqdm(enumerate(batch_iterate(embeddata.embeddings, self.batch_size)), desc="Ingesting data"):
|
100 |
+
|
101 |
+
points = []
|
102 |
+
for j, embedding in enumerate(batch_embeddings):
|
103 |
+
|
104 |
+
image_bs64 = image_to_base64(embeddata.images[i*self.batch_size + j])
|
105 |
+
|
106 |
+
current_point = models.PointStruct(id=i*self.batch_size + j,
|
107 |
+
vector=embedding,
|
108 |
+
payload={"image": image_bs64})
|
109 |
+
|
110 |
+
points.append(current_point)
|
111 |
+
|
112 |
+
self.client.upsert(collection_name=self.collection_name, points=points, wait=True)
|
113 |
+
|
114 |
+
class Retriever:
|
115 |
+
|
116 |
+
def __init__(self, vector_db, embeddata):
|
117 |
+
|
118 |
+
self.vector_db = vector_db
|
119 |
+
self.embeddata = embeddata
|
120 |
+
|
121 |
+
def search(self, query):
|
122 |
+
query_embedding = self.embeddata.get_query_embedding(query)
|
123 |
+
|
124 |
+
query_result = self.vector_db.client.query_points(collection_name=self.vector_db.collection_name,
|
125 |
+
query=query_embedding,
|
126 |
+
limit=4,
|
127 |
+
search_params=models.SearchParams(
|
128 |
+
quantization=models.QuantizationSearchParams(
|
129 |
+
ignore=True,
|
130 |
+
rescore=True,
|
131 |
+
oversampling=2.0
|
132 |
+
)
|
133 |
+
)
|
134 |
+
)
|
135 |
+
|
136 |
+
return query_result
|
137 |
+
|
138 |
+
class RAG:
|
139 |
+
|
140 |
+
def __init__(self,
|
141 |
+
retriever,
|
142 |
+
llm_name = "deepseek-ai/Janus-Pro-1B"
|
143 |
+
):
|
144 |
+
|
145 |
+
self.llm_name = llm_name
|
146 |
+
self._setup_llm()
|
147 |
+
self.retriever = retriever
|
148 |
+
|
149 |
+
def _setup_llm(self):
|
150 |
+
|
151 |
+
self.vl_chat_processor = VLChatProcessor.from_pretrained(self.llm_name, cache_dir="./Janus/hf_cache")
|
152 |
+
self.tokenizer = self.vl_chat_processor.tokenizer
|
153 |
+
|
154 |
+
self.vl_gpt = AutoModelForCausalLM.from_pretrained(
|
155 |
+
self.llm_name, trust_remote_code=True, cache_dir="./Janus/hf_cache"
|
156 |
+
).to(torch.bfloat16).eval()
|
157 |
+
|
158 |
+
def generate_context(self, query):
|
159 |
+
|
160 |
+
result = self.retriever.search(query)
|
161 |
+
return f"./images/page{result.points[0].id}.jpg"
|
162 |
+
|
163 |
+
def query(self, query):
|
164 |
+
image_context = self.generate_context(query=query)
|
165 |
+
|
166 |
+
qa_prompt_tmpl_str = f"""The user has asked the following question:
|
167 |
+
|
168 |
+
---------------------
|
169 |
+
|
170 |
+
Query: {query}
|
171 |
+
|
172 |
+
---------------------
|
173 |
+
|
174 |
+
Some images are available to you
|
175 |
+
for this question. You have
|
176 |
+
to understand these images thoroughly and
|
177 |
+
extract all relevant information that will
|
178 |
+
help you answer the query.
|
179 |
+
|
180 |
+
---------------------
|
181 |
+
"""
|
182 |
+
|
183 |
+
conversation = [
|
184 |
+
{
|
185 |
+
"role": "User",
|
186 |
+
"content": f"<image_placeholder> \n {qa_prompt_tmpl_str}",
|
187 |
+
"images": [image_context],
|
188 |
+
},
|
189 |
+
{"role": "Assistant", "content": ""},
|
190 |
+
]
|
191 |
+
|
192 |
+
pil_images = load_pil_images(conversation)
|
193 |
+
prepare_inputs = self.vl_chat_processor(
|
194 |
+
conversations=conversation, images=pil_images, force_batchify=True
|
195 |
+
).to(self.vl_gpt.device)
|
196 |
+
|
197 |
+
inputs_embeds = self.vl_gpt.prepare_inputs_embeds(**prepare_inputs)
|
198 |
+
|
199 |
+
outputs = self.vl_gpt.language_model.generate(
|
200 |
+
inputs_embeds=inputs_embeds,
|
201 |
+
attention_mask=prepare_inputs.attention_mask,
|
202 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
203 |
+
bos_token_id=self.tokenizer.bos_token_id,
|
204 |
+
eos_token_id=self.tokenizer.eos_token_id,
|
205 |
+
max_new_tokens=512,
|
206 |
+
do_sample=False,
|
207 |
+
use_cache=True,
|
208 |
+
)
|
209 |
+
streaming_response = self.tokenizer.decode(outputs[0].cpu().tolist(), skip_special_tokens=True)
|
210 |
+
|
211 |
+
return streaming_response
|