Spaces:
Sleeping
Sleeping
from easydict import EasyDict | |
# ============================================================== | |
# begin of the most frequently changed config specified by the user | |
# ============================================================== | |
env_name = 'game_2048' | |
action_space_size = 4 | |
collector_env_num = 8 | |
n_episode = 8 | |
evaluator_env_num = 3 | |
num_simulations = 100 | |
update_per_collect = 200 | |
batch_size = 512 | |
max_env_step = int(5e6) | |
reanalyze_ratio = 0. | |
num_of_possible_chance_tile = 2 | |
chance_space_size = 16 * num_of_possible_chance_tile | |
# ============================================================== | |
# end of the most frequently changed config specified by the user | |
# ============================================================== | |
atari_muzero_config = dict( | |
exp_name=f'data_mz_ctree/game_2048_npct-{num_of_possible_chance_tile}_muzero_ns{num_simulations}_upc{update_per_collect}_rr{reanalyze_ratio}_bs{batch_size}_sslw2_seed0', | |
env=dict( | |
stop_value=int(1e6), | |
env_name=env_name, | |
obs_shape=(16, 4, 4), | |
obs_type='dict_encoded_board', | |
raw_reward_type='raw', # 'merged_tiles_plus_log_max_tile_num' | |
reward_normalize=False, | |
reward_norm_scale=100, | |
max_tile=int(2 ** 16), # 2**11=2048, 2**16=65536 | |
num_of_possible_chance_tile=num_of_possible_chance_tile, | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
n_evaluator_episode=evaluator_env_num, | |
manager=dict(shared_memory=False, ), | |
), | |
policy=dict( | |
model=dict( | |
observation_shape=(16, 4, 4), | |
action_space_size=action_space_size, | |
image_channel=16, | |
# NOTE: whether to use the self_supervised_learning_loss. default is False | |
self_supervised_learning_loss=True, | |
), | |
mcts_ctree=True, | |
gumbel_algo=False, | |
cuda=True, | |
game_segment_length=200, | |
update_per_collect=update_per_collect, | |
batch_size=batch_size, | |
td_steps=10, | |
discount_factor=0.999, | |
manual_temperature_decay=True, | |
threshold_training_steps_for_final_temperature=int(1e5), | |
optim_type='Adam', | |
lr_piecewise_constant_decay=False, | |
learning_rate=3e-3, | |
# (float) Weight decay for training policy network. | |
weight_decay=1e-4, | |
num_simulations=num_simulations, | |
reanalyze_ratio=reanalyze_ratio, | |
ssl_loss_weight=2, # default is 0 | |
n_episode=n_episode, | |
eval_freq=int(2e3), | |
replay_buffer_size=int(1e6), # the size/capacity of replay_buffer, in the terms of transitions. | |
collector_env_num=collector_env_num, | |
evaluator_env_num=evaluator_env_num, | |
), | |
) | |
atari_muzero_config = EasyDict(atari_muzero_config) | |
main_config = atari_muzero_config | |
atari_muzero_create_config = dict( | |
env=dict( | |
type='game_2048', | |
import_names=['zoo.game_2048.envs.game_2048_env'], | |
), | |
env_manager=dict(type='subprocess'), | |
policy=dict( | |
type='muzero', | |
import_names=['lzero.policy.muzero'], | |
), | |
) | |
atari_muzero_create_config = EasyDict(atari_muzero_create_config) | |
create_config = atari_muzero_create_config | |
if __name__ == "__main__": | |
from lzero.entry import train_muzero | |
train_muzero([main_config, create_config], seed=0, max_env_step=max_env_step) | |