Spaces:
Sleeping
Sleeping
""" | |
Created on Sat Apr 9 04:08:02 2022 | |
@author: Admin_with ODD Team | |
Edited by our team : Sat Oct 5 10:00 2024 | |
references: https://github.com/vinvino02/GLPDepth | |
""" | |
import io | |
import torch | |
import base64 | |
from config import CONFIG | |
from torchvision import transforms | |
from matplotlib import pyplot as plt | |
from matplotlib.backends.backend_agg import FigureCanvasAgg as FigureCanvas | |
from transformers import DetrForObjectDetection, DetrImageProcessor | |
class DETR: | |
def __init__(self): | |
self.CLASSES = [ | |
'N/A', 'person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', | |
'train', 'truck', 'boat', 'traffic light', 'fire hydrant', 'N/A', | |
'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', | |
'sheep', 'cow', 'elephant', 'bear', 'zebra', 'giraffe', 'N/A', 'backpack', | |
'umbrella', 'N/A', 'N/A', 'handbag', 'tie', 'suitcase', 'frisbee', 'skis', | |
'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', | |
'skateboard', 'surfboard', 'tennis racket', 'bottle', 'N/A', 'wine glass', | |
'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich', | |
'orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', | |
'chair', 'couch', 'potted plant', 'bed', 'N/A', 'dining table', 'N/A', | |
'N/A', 'toilet', 'N/A', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', | |
'cell phone', 'microwave', 'oven', 'toaster', 'sink', 'refrigerator', 'N/A', | |
'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', | |
'toothbrush' | |
] | |
self.COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], | |
[0.929, 0.694, 0.125], [0, 0, 1], [0.466, 0.674, 0.188], | |
[0.301, 0.745, 0.933]] | |
self.transform = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | |
]) | |
self.model = DetrForObjectDetection.from_pretrained(CONFIG['detr_model_path'], revision="no_timm") | |
self.model.to(CONFIG['device']) | |
self.model.eval() | |
def box_cxcywh_to_xyxy(self, x): | |
x_c, y_c, w, h = x.unbind(1) | |
b = [(x_c - 0.5 * w), (y_c - 0.5 * h), | |
(x_c + 0.5 * w), (y_c + 0.5 * h)] | |
return torch.stack(b, dim=1).to(CONFIG['device']) | |
def rescale_bboxes(self, out_bbox, size): | |
img_w, img_h = size | |
b = self.box_cxcywh_to_xyxy(out_bbox) | |
b = b * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32).to(CONFIG['device']) | |
return b | |
def detect(self, im): | |
img = self.transform(im).unsqueeze(0).to(CONFIG['device']) | |
assert img.shape[-2] <= 1600 and img.shape[-1] <= 1600, 'Image too large' | |
outputs = self.model(img) | |
probas = outputs['logits'].softmax(-1)[0, :, :-1] | |
keep = probas.max(-1).values > 0.7 | |
bboxes_scaled = self.rescale_bboxes(outputs['pred_boxes'][0, keep], im.size) | |
return probas[keep], bboxes_scaled | |
def visualize(self, im, probas, bboxes): | |
""" | |
Visualizes the detected bounding boxes and class probabilities on the image. | |
Parameters: | |
im (PIL.Image): The original input image. | |
probas (Tensor): Class probabilities for detected objects. | |
bboxes (Tensor): Bounding boxes for detected objects. | |
""" | |
# Convert image to RGB format for matplotlib | |
fig, ax = plt.subplots(figsize=(10, 6)) | |
ax.imshow(im) | |
# Iterate over detections and draw bounding boxes and labels | |
for p, (xmin, ymin, xmax, ymax), color in zip(probas, bboxes, self.COLORS * 100): | |
# Detach tensors and convert to float | |
xmin, ymin, xmax, ymax = map(lambda x: x.detach().cpu().numpy().item(), (xmin, ymin, xmax, ymax)) | |
ax.add_patch(plt.Rectangle((xmin, ymin), xmax - xmin, ymax - ymin, | |
fill=False, color=color, linewidth=3)) | |
cl = p.argmax() | |
text = f'{self.CLASSES[cl]}: {p[cl].detach().cpu().numpy():0.2f}' # Detach probability as well | |
ax.text(xmin, ymin, text, fontsize=15, bbox=dict(facecolor='yellow', alpha=0.5)) | |
ax.axis('off') | |
# Convert the plot to a PIL Image and then to bytes | |
canvas = FigureCanvas(fig) | |
buf = io.BytesIO() | |
canvas.print_png(buf) | |
buf.seek(0) | |
# Base64 encode the image | |
img_bytes = buf.getvalue() | |
img_base64 = base64.b64encode(img_bytes).decode('utf-8') | |
# Close the figure to release memory | |
plt.close(fig) | |
return img_base64 | |