Spaces:
Running
on
Zero
Running
on
Zero
Upload 1425 files
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +25 -0
- custom_nodes/comfyui_controlnet_aux/LICENSE.txt +201 -0
- custom_nodes/comfyui_controlnet_aux/NotoSans-Regular.ttf +3 -0
- custom_nodes/comfyui_controlnet_aux/README.md +252 -0
- custom_nodes/comfyui_controlnet_aux/UPDATES.md +44 -0
- custom_nodes/comfyui_controlnet_aux/__init__.py +214 -0
- custom_nodes/comfyui_controlnet_aux/config.example.yaml +20 -0
- custom_nodes/comfyui_controlnet_aux/dev_interface.py +6 -0
- custom_nodes/comfyui_controlnet_aux/examples/CNAuxBanner.jpg +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/ExecuteAll.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/ExecuteAll1.jpg +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/ExecuteAll2.jpg +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/comfyui-controlnet-aux-logo.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_animal_pose.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_anime_face_segmentor.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_anyline.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_densepose.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_depth_anything.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_depth_anything_v2.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_dsine.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_marigold.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_marigold_flat.jpg +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_mesh_graphormer.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_metric3d.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_onnx.png +0 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_recolor.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_save_kps.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_teed.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_torchscript.png +3 -0
- custom_nodes/comfyui_controlnet_aux/examples/example_unimatch.png +3 -0
- custom_nodes/comfyui_controlnet_aux/hint_image_enchance.py +233 -0
- custom_nodes/comfyui_controlnet_aux/install.bat +20 -0
- custom_nodes/comfyui_controlnet_aux/log.py +80 -0
- custom_nodes/comfyui_controlnet_aux/lvminthin.py +87 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/anime_face_segment.py +43 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/anyline.py +87 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/binary.py +29 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/canny.py +30 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/color.py +26 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/densepose.py +31 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/depth_anything.py +55 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/depth_anything_v2.py +56 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/diffusion_edge.py +41 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/dsine.py +31 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/dwpose.py +162 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/hed.py +53 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/inpaint.py +32 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/leres.py +32 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/lineart.py +30 -0
- custom_nodes/comfyui_controlnet_aux/node_wrappers/lineart_anime.py +27 -0
.gitattributes
CHANGED
@@ -42,3 +42,28 @@ custom_nodes/ComfyQR/example_generations/unscannable_00001_fixed_.png filter=lfs
|
|
42 |
custom_nodes/ComfyQR/img/for_deletion/badgers_levels_adjusted.png filter=lfs diff=lfs merge=lfs -text
|
43 |
custom_nodes/ComfyQR/img/for_deletion/badgers.png filter=lfs diff=lfs merge=lfs -text
|
44 |
custom_nodes/ComfyQR/img/node-mask-qr-errors.png filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
custom_nodes/ComfyQR/img/for_deletion/badgers_levels_adjusted.png filter=lfs diff=lfs merge=lfs -text
|
43 |
custom_nodes/ComfyQR/img/for_deletion/badgers.png filter=lfs diff=lfs merge=lfs -text
|
44 |
custom_nodes/ComfyQR/img/node-mask-qr-errors.png filter=lfs diff=lfs merge=lfs -text
|
45 |
+
custom_nodes/comfyui_controlnet_aux/examples/CNAuxBanner.jpg filter=lfs diff=lfs merge=lfs -text
|
46 |
+
custom_nodes/comfyui_controlnet_aux/examples/comfyui-controlnet-aux-logo.png filter=lfs diff=lfs merge=lfs -text
|
47 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_animal_pose.png filter=lfs diff=lfs merge=lfs -text
|
48 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_anime_face_segmentor.png filter=lfs diff=lfs merge=lfs -text
|
49 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_anyline.png filter=lfs diff=lfs merge=lfs -text
|
50 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_densepose.png filter=lfs diff=lfs merge=lfs -text
|
51 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_depth_anything_v2.png filter=lfs diff=lfs merge=lfs -text
|
52 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_depth_anything.png filter=lfs diff=lfs merge=lfs -text
|
53 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_dsine.png filter=lfs diff=lfs merge=lfs -text
|
54 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_marigold_flat.jpg filter=lfs diff=lfs merge=lfs -text
|
55 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_marigold.png filter=lfs diff=lfs merge=lfs -text
|
56 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_mesh_graphormer.png filter=lfs diff=lfs merge=lfs -text
|
57 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_metric3d.png filter=lfs diff=lfs merge=lfs -text
|
58 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_recolor.png filter=lfs diff=lfs merge=lfs -text
|
59 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_save_kps.png filter=lfs diff=lfs merge=lfs -text
|
60 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_teed.png filter=lfs diff=lfs merge=lfs -text
|
61 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_torchscript.png filter=lfs diff=lfs merge=lfs -text
|
62 |
+
custom_nodes/comfyui_controlnet_aux/examples/example_unimatch.png filter=lfs diff=lfs merge=lfs -text
|
63 |
+
custom_nodes/comfyui_controlnet_aux/examples/ExecuteAll.png filter=lfs diff=lfs merge=lfs -text
|
64 |
+
custom_nodes/comfyui_controlnet_aux/examples/ExecuteAll1.jpg filter=lfs diff=lfs merge=lfs -text
|
65 |
+
custom_nodes/comfyui_controlnet_aux/examples/ExecuteAll2.jpg filter=lfs diff=lfs merge=lfs -text
|
66 |
+
custom_nodes/comfyui_controlnet_aux/NotoSans-Regular.ttf filter=lfs diff=lfs merge=lfs -text
|
67 |
+
custom_nodes/comfyui_controlnet_aux/src/custom_controlnet_aux/mesh_graphormer/hand_landmarker.task filter=lfs diff=lfs merge=lfs -text
|
68 |
+
custom_nodes/comfyui_controlnet_aux/src/custom_controlnet_aux/tests/test_image.png filter=lfs diff=lfs merge=lfs -text
|
69 |
+
custom_nodes/comfyui_controlnet_aux/tests/pose.png filter=lfs diff=lfs merge=lfs -text
|
custom_nodes/comfyui_controlnet_aux/LICENSE.txt
ADDED
@@ -0,0 +1,201 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
Apache License
|
2 |
+
Version 2.0, January 2004
|
3 |
+
http://www.apache.org/licenses/
|
4 |
+
|
5 |
+
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
|
6 |
+
|
7 |
+
1. Definitions.
|
8 |
+
|
9 |
+
"License" shall mean the terms and conditions for use, reproduction,
|
10 |
+
and distribution as defined by Sections 1 through 9 of this document.
|
11 |
+
|
12 |
+
"Licensor" shall mean the copyright owner or entity authorized by
|
13 |
+
the copyright owner that is granting the License.
|
14 |
+
|
15 |
+
"Legal Entity" shall mean the union of the acting entity and all
|
16 |
+
other entities that control, are controlled by, or are under common
|
17 |
+
control with that entity. For the purposes of this definition,
|
18 |
+
"control" means (i) the power, direct or indirect, to cause the
|
19 |
+
direction or management of such entity, whether by contract or
|
20 |
+
otherwise, or (ii) ownership of fifty percent (50%) or more of the
|
21 |
+
outstanding shares, or (iii) beneficial ownership of such entity.
|
22 |
+
|
23 |
+
"You" (or "Your") shall mean an individual or Legal Entity
|
24 |
+
exercising permissions granted by this License.
|
25 |
+
|
26 |
+
"Source" form shall mean the preferred form for making modifications,
|
27 |
+
including but not limited to software source code, documentation
|
28 |
+
source, and configuration files.
|
29 |
+
|
30 |
+
"Object" form shall mean any form resulting from mechanical
|
31 |
+
transformation or translation of a Source form, including but
|
32 |
+
not limited to compiled object code, generated documentation,
|
33 |
+
and conversions to other media types.
|
34 |
+
|
35 |
+
"Work" shall mean the work of authorship, whether in Source or
|
36 |
+
Object form, made available under the License, as indicated by a
|
37 |
+
copyright notice that is included in or attached to the work
|
38 |
+
(an example is provided in the Appendix below).
|
39 |
+
|
40 |
+
"Derivative Works" shall mean any work, whether in Source or Object
|
41 |
+
form, that is based on (or derived from) the Work and for which the
|
42 |
+
editorial revisions, annotations, elaborations, or other modifications
|
43 |
+
represent, as a whole, an original work of authorship. For the purposes
|
44 |
+
of this License, Derivative Works shall not include works that remain
|
45 |
+
separable from, or merely link (or bind by name) to the interfaces of,
|
46 |
+
the Work and Derivative Works thereof.
|
47 |
+
|
48 |
+
"Contribution" shall mean any work of authorship, including
|
49 |
+
the original version of the Work and any modifications or additions
|
50 |
+
to that Work or Derivative Works thereof, that is intentionally
|
51 |
+
submitted to Licensor for inclusion in the Work by the copyright owner
|
52 |
+
or by an individual or Legal Entity authorized to submit on behalf of
|
53 |
+
the copyright owner. For the purposes of this definition, "submitted"
|
54 |
+
means any form of electronic, verbal, or written communication sent
|
55 |
+
to the Licensor or its representatives, including but not limited to
|
56 |
+
communication on electronic mailing lists, source code control systems,
|
57 |
+
and issue tracking systems that are managed by, or on behalf of, the
|
58 |
+
Licensor for the purpose of discussing and improving the Work, but
|
59 |
+
excluding communication that is conspicuously marked or otherwise
|
60 |
+
designated in writing by the copyright owner as "Not a Contribution."
|
61 |
+
|
62 |
+
"Contributor" shall mean Licensor and any individual or Legal Entity
|
63 |
+
on behalf of whom a Contribution has been received by Licensor and
|
64 |
+
subsequently incorporated within the Work.
|
65 |
+
|
66 |
+
2. Grant of Copyright License. Subject to the terms and conditions of
|
67 |
+
this License, each Contributor hereby grants to You a perpetual,
|
68 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
69 |
+
copyright license to reproduce, prepare Derivative Works of,
|
70 |
+
publicly display, publicly perform, sublicense, and distribute the
|
71 |
+
Work and such Derivative Works in Source or Object form.
|
72 |
+
|
73 |
+
3. Grant of Patent License. Subject to the terms and conditions of
|
74 |
+
this License, each Contributor hereby grants to You a perpetual,
|
75 |
+
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
|
76 |
+
(except as stated in this section) patent license to make, have made,
|
77 |
+
use, offer to sell, sell, import, and otherwise transfer the Work,
|
78 |
+
where such license applies only to those patent claims licensable
|
79 |
+
by such Contributor that are necessarily infringed by their
|
80 |
+
Contribution(s) alone or by combination of their Contribution(s)
|
81 |
+
with the Work to which such Contribution(s) was submitted. If You
|
82 |
+
institute patent litigation against any entity (including a
|
83 |
+
cross-claim or counterclaim in a lawsuit) alleging that the Work
|
84 |
+
or a Contribution incorporated within the Work constitutes direct
|
85 |
+
or contributory patent infringement, then any patent licenses
|
86 |
+
granted to You under this License for that Work shall terminate
|
87 |
+
as of the date such litigation is filed.
|
88 |
+
|
89 |
+
4. Redistribution. You may reproduce and distribute copies of the
|
90 |
+
Work or Derivative Works thereof in any medium, with or without
|
91 |
+
modifications, and in Source or Object form, provided that You
|
92 |
+
meet the following conditions:
|
93 |
+
|
94 |
+
(a) You must give any other recipients of the Work or
|
95 |
+
Derivative Works a copy of this License; and
|
96 |
+
|
97 |
+
(b) You must cause any modified files to carry prominent notices
|
98 |
+
stating that You changed the files; and
|
99 |
+
|
100 |
+
(c) You must retain, in the Source form of any Derivative Works
|
101 |
+
that You distribute, all copyright, patent, trademark, and
|
102 |
+
attribution notices from the Source form of the Work,
|
103 |
+
excluding those notices that do not pertain to any part of
|
104 |
+
the Derivative Works; and
|
105 |
+
|
106 |
+
(d) If the Work includes a "NOTICE" text file as part of its
|
107 |
+
distribution, then any Derivative Works that You distribute must
|
108 |
+
include a readable copy of the attribution notices contained
|
109 |
+
within such NOTICE file, excluding those notices that do not
|
110 |
+
pertain to any part of the Derivative Works, in at least one
|
111 |
+
of the following places: within a NOTICE text file distributed
|
112 |
+
as part of the Derivative Works; within the Source form or
|
113 |
+
documentation, if provided along with the Derivative Works; or,
|
114 |
+
within a display generated by the Derivative Works, if and
|
115 |
+
wherever such third-party notices normally appear. The contents
|
116 |
+
of the NOTICE file are for informational purposes only and
|
117 |
+
do not modify the License. You may add Your own attribution
|
118 |
+
notices within Derivative Works that You distribute, alongside
|
119 |
+
or as an addendum to the NOTICE text from the Work, provided
|
120 |
+
that such additional attribution notices cannot be construed
|
121 |
+
as modifying the License.
|
122 |
+
|
123 |
+
You may add Your own copyright statement to Your modifications and
|
124 |
+
may provide additional or different license terms and conditions
|
125 |
+
for use, reproduction, or distribution of Your modifications, or
|
126 |
+
for any such Derivative Works as a whole, provided Your use,
|
127 |
+
reproduction, and distribution of the Work otherwise complies with
|
128 |
+
the conditions stated in this License.
|
129 |
+
|
130 |
+
5. Submission of Contributions. Unless You explicitly state otherwise,
|
131 |
+
any Contribution intentionally submitted for inclusion in the Work
|
132 |
+
by You to the Licensor shall be under the terms and conditions of
|
133 |
+
this License, without any additional terms or conditions.
|
134 |
+
Notwithstanding the above, nothing herein shall supersede or modify
|
135 |
+
the terms of any separate license agreement you may have executed
|
136 |
+
with Licensor regarding such Contributions.
|
137 |
+
|
138 |
+
6. Trademarks. This License does not grant permission to use the trade
|
139 |
+
names, trademarks, service marks, or product names of the Licensor,
|
140 |
+
except as required for reasonable and customary use in describing the
|
141 |
+
origin of the Work and reproducing the content of the NOTICE file.
|
142 |
+
|
143 |
+
7. Disclaimer of Warranty. Unless required by applicable law or
|
144 |
+
agreed to in writing, Licensor provides the Work (and each
|
145 |
+
Contributor provides its Contributions) on an "AS IS" BASIS,
|
146 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
|
147 |
+
implied, including, without limitation, any warranties or conditions
|
148 |
+
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
|
149 |
+
PARTICULAR PURPOSE. You are solely responsible for determining the
|
150 |
+
appropriateness of using or redistributing the Work and assume any
|
151 |
+
risks associated with Your exercise of permissions under this License.
|
152 |
+
|
153 |
+
8. Limitation of Liability. In no event and under no legal theory,
|
154 |
+
whether in tort (including negligence), contract, or otherwise,
|
155 |
+
unless required by applicable law (such as deliberate and grossly
|
156 |
+
negligent acts) or agreed to in writing, shall any Contributor be
|
157 |
+
liable to You for damages, including any direct, indirect, special,
|
158 |
+
incidental, or consequential damages of any character arising as a
|
159 |
+
result of this License or out of the use or inability to use the
|
160 |
+
Work (including but not limited to damages for loss of goodwill,
|
161 |
+
work stoppage, computer failure or malfunction, or any and all
|
162 |
+
other commercial damages or losses), even if such Contributor
|
163 |
+
has been advised of the possibility of such damages.
|
164 |
+
|
165 |
+
9. Accepting Warranty or Additional Liability. While redistributing
|
166 |
+
the Work or Derivative Works thereof, You may choose to offer,
|
167 |
+
and charge a fee for, acceptance of support, warranty, indemnity,
|
168 |
+
or other liability obligations and/or rights consistent with this
|
169 |
+
License. However, in accepting such obligations, You may act only
|
170 |
+
on Your own behalf and on Your sole responsibility, not on behalf
|
171 |
+
of any other Contributor, and only if You agree to indemnify,
|
172 |
+
defend, and hold each Contributor harmless for any liability
|
173 |
+
incurred by, or claims asserted against, such Contributor by reason
|
174 |
+
of your accepting any such warranty or additional liability.
|
175 |
+
|
176 |
+
END OF TERMS AND CONDITIONS
|
177 |
+
|
178 |
+
APPENDIX: How to apply the Apache License to your work.
|
179 |
+
|
180 |
+
To apply the Apache License to your work, attach the following
|
181 |
+
boilerplate notice, with the fields enclosed by brackets "[]"
|
182 |
+
replaced with your own identifying information. (Don't include
|
183 |
+
the brackets!) The text should be enclosed in the appropriate
|
184 |
+
comment syntax for the file format. We also recommend that a
|
185 |
+
file or class name and description of purpose be included on the
|
186 |
+
same "printed page" as the copyright notice for easier
|
187 |
+
identification within third-party archives.
|
188 |
+
|
189 |
+
Copyright [yyyy] [name of copyright owner]
|
190 |
+
|
191 |
+
Licensed under the Apache License, Version 2.0 (the "License");
|
192 |
+
you may not use this file except in compliance with the License.
|
193 |
+
You may obtain a copy of the License at
|
194 |
+
|
195 |
+
http://www.apache.org/licenses/LICENSE-2.0
|
196 |
+
|
197 |
+
Unless required by applicable law or agreed to in writing, software
|
198 |
+
distributed under the License is distributed on an "AS IS" BASIS,
|
199 |
+
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
200 |
+
See the License for the specific language governing permissions and
|
201 |
+
limitations under the License.
|
custom_nodes/comfyui_controlnet_aux/NotoSans-Regular.ttf
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6b04c8dd65af6b73eb4279472ed1580b29102d6496a377340e80a40cdb3b22c9
|
3 |
+
size 455188
|
custom_nodes/comfyui_controlnet_aux/README.md
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# ComfyUI's ControlNet Auxiliary Preprocessors
|
2 |
+
Plug-and-play [ComfyUI](https://github.com/comfyanonymous/ComfyUI) node sets for making [ControlNet](https://github.com/lllyasviel/ControlNet/) hint images
|
3 |
+
|
4 |
+
"anime style, a protest in the street, cyberpunk city, a woman with pink hair and golden eyes (looking at the viewer) is holding a sign with the text "ComfyUI ControlNet Aux" in bold, neon pink" on Flux.1 Dev
|
5 |
+
|
6 |
+

|
7 |
+
|
8 |
+
The code is copy-pasted from the respective folders in https://github.com/lllyasviel/ControlNet/tree/main/annotator and connected to [the 🤗 Hub](https://huggingface.co/lllyasviel/Annotators).
|
9 |
+
|
10 |
+
All credit & copyright goes to https://github.com/lllyasviel.
|
11 |
+
|
12 |
+
# Updates
|
13 |
+
Go to [Update page](./UPDATES.md) to follow updates
|
14 |
+
|
15 |
+
# Installation:
|
16 |
+
## Using ComfyUI Manager (recommended):
|
17 |
+
Install [ComfyUI Manager](https://github.com/ltdrdata/ComfyUI-Manager) and do steps introduced there to install this repo.
|
18 |
+
|
19 |
+
## Alternative:
|
20 |
+
If you're running on Linux, or non-admin account on windows you'll want to ensure `/ComfyUI/custom_nodes` and `comfyui_controlnet_aux` has write permissions.
|
21 |
+
|
22 |
+
There is now a **install.bat** you can run to install to portable if detected. Otherwise it will default to system and assume you followed ConfyUI's manual installation steps.
|
23 |
+
|
24 |
+
If you can't run **install.bat** (e.g. you are a Linux user). Open the CMD/Shell and do the following:
|
25 |
+
- Navigate to your `/ComfyUI/custom_nodes/` folder
|
26 |
+
- Run `git clone https://github.com/Fannovel16/comfyui_controlnet_aux/`
|
27 |
+
- Navigate to your `comfyui_controlnet_aux` folder
|
28 |
+
- Portable/venv:
|
29 |
+
- Run `path/to/ComfUI/python_embeded/python.exe -s -m pip install -r requirements.txt`
|
30 |
+
- With system python
|
31 |
+
- Run `pip install -r requirements.txt`
|
32 |
+
- Start ComfyUI
|
33 |
+
|
34 |
+
# Nodes
|
35 |
+
Please note that this repo only supports preprocessors making hint images (e.g. stickman, canny edge, etc).
|
36 |
+
All preprocessors except Inpaint are intergrated into `AIO Aux Preprocessor` node.
|
37 |
+
This node allow you to quickly get the preprocessor but a preprocessor's own threshold parameters won't be able to set.
|
38 |
+
You need to use its node directly to set thresholds.
|
39 |
+
|
40 |
+
# Nodes (sections are categories in Comfy menu)
|
41 |
+
## Line Extractors
|
42 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
43 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
44 |
+
| Binary Lines | binary | control_scribble |
|
45 |
+
| Canny Edge | canny | control_v11p_sd15_canny <br> control_canny <br> t2iadapter_canny |
|
46 |
+
| HED Soft-Edge Lines | hed | control_v11p_sd15_softedge <br> control_hed |
|
47 |
+
| Standard Lineart | standard_lineart | control_v11p_sd15_lineart |
|
48 |
+
| Realistic Lineart | lineart (or `lineart_coarse` if `coarse` is enabled) | control_v11p_sd15_lineart |
|
49 |
+
| Anime Lineart | lineart_anime | control_v11p_sd15s2_lineart_anime |
|
50 |
+
| Manga Lineart | lineart_anime_denoise | control_v11p_sd15s2_lineart_anime |
|
51 |
+
| M-LSD Lines | mlsd | control_v11p_sd15_mlsd <br> control_mlsd |
|
52 |
+
| PiDiNet Soft-Edge Lines | pidinet | control_v11p_sd15_softedge <br> control_scribble |
|
53 |
+
| Scribble Lines | scribble | control_v11p_sd15_scribble <br> control_scribble |
|
54 |
+
| Scribble XDoG Lines | scribble_xdog | control_v11p_sd15_scribble <br> control_scribble |
|
55 |
+
| Fake Scribble Lines | scribble_hed | control_v11p_sd15_scribble <br> control_scribble |
|
56 |
+
| TEED Soft-Edge Lines | teed | [controlnet-sd-xl-1.0-softedge-dexined](https://huggingface.co/SargeZT/controlnet-sd-xl-1.0-softedge-dexined/blob/main/controlnet-sd-xl-1.0-softedge-dexined.safetensors) <br> control_v11p_sd15_softedge (Theoretically)
|
57 |
+
| Scribble PiDiNet Lines | scribble_pidinet | control_v11p_sd15_scribble <br> control_scribble |
|
58 |
+
| AnyLine Lineart | | mistoLine_fp16.safetensors <br> mistoLine_rank256 <br> control_v11p_sd15s2_lineart_anime <br> control_v11p_sd15_lineart |
|
59 |
+
|
60 |
+
## Normal and Depth Estimators
|
61 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
62 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
63 |
+
| MiDaS Depth Map | (normal) depth | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
|
64 |
+
| LeReS Depth Map | depth_leres | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
|
65 |
+
| Zoe Depth Map | depth_zoe | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
|
66 |
+
| MiDaS Normal Map | normal_map | control_normal |
|
67 |
+
| BAE Normal Map | normal_bae | control_v11p_sd15_normalbae |
|
68 |
+
| MeshGraphormer Hand Refiner ([HandRefinder](https://github.com/wenquanlu/HandRefiner)) | depth_hand_refiner | [control_sd15_inpaint_depth_hand_fp16](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/control_sd15_inpaint_depth_hand_fp16.safetensors) |
|
69 |
+
| Depth Anything | depth_anything | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) |
|
70 |
+
| Zoe Depth Anything <br> (Basically Zoe but the encoder is replaced with DepthAnything) | depth_anything | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) |
|
71 |
+
| Normal DSINE | | control_normal/control_v11p_sd15_normalbae |
|
72 |
+
| Metric3D Depth | | control_v11f1p_sd15_depth <br> control_depth <br> t2iadapter_depth |
|
73 |
+
| Metric3D Normal | | control_v11p_sd15_normalbae |
|
74 |
+
| Depth Anything V2 | | [Depth-Anything](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_controlnet/diffusion_pytorch_model.safetensors) |
|
75 |
+
|
76 |
+
## Faces and Poses Estimators
|
77 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
78 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
79 |
+
| DWPose Estimator | dw_openpose_full | control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose |
|
80 |
+
| OpenPose Estimator | openpose (detect_body) <br> openpose_hand (detect_body + detect_hand) <br> openpose_faceonly (detect_face) <br> openpose_full (detect_hand + detect_body + detect_face) | control_v11p_sd15_openpose <br> control_openpose <br> t2iadapter_openpose |
|
81 |
+
| MediaPipe Face Mesh | mediapipe_face | controlnet_sd21_laion_face_v2 |
|
82 |
+
| Animal Estimator | animal_openpose | [control_sd15_animal_openpose_fp16](https://huggingface.co/huchenlei/animal_openpose/blob/main/control_sd15_animal_openpose_fp16.pth) |
|
83 |
+
|
84 |
+
## Optical Flow Estimators
|
85 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
86 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
87 |
+
| Unimatch Optical Flow | | [DragNUWA](https://github.com/ProjectNUWA/DragNUWA) |
|
88 |
+
|
89 |
+
### How to get OpenPose-format JSON?
|
90 |
+
#### User-side
|
91 |
+
This workflow will save images to ComfyUI's output folder (the same location as output images). If you haven't found `Save Pose Keypoints` node, update this extension
|
92 |
+

|
93 |
+
|
94 |
+
#### Dev-side
|
95 |
+
An array of [OpenPose-format JSON](https://github.com/CMU-Perceptual-Computing-Lab/openpose/blob/master/doc/02_output.md#json-output-format) corresponsding to each frame in an IMAGE batch can be gotten from DWPose and OpenPose using `app.nodeOutputs` on the UI or `/history` API endpoint. JSON output from AnimalPose uses a kinda similar format to OpenPose JSON:
|
96 |
+
```
|
97 |
+
[
|
98 |
+
{
|
99 |
+
"version": "ap10k",
|
100 |
+
"animals": [
|
101 |
+
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
|
102 |
+
[[x1, y1, 1], [x2, y2, 1],..., [x17, y17, 1]],
|
103 |
+
...
|
104 |
+
],
|
105 |
+
"canvas_height": 512,
|
106 |
+
"canvas_width": 768
|
107 |
+
},
|
108 |
+
...
|
109 |
+
]
|
110 |
+
```
|
111 |
+
|
112 |
+
For extension developers (e.g. Openpose editor):
|
113 |
+
```js
|
114 |
+
const poseNodes = app.graph._nodes.filter(node => ["OpenposePreprocessor", "DWPreprocessor", "AnimalPosePreprocessor"].includes(node.type))
|
115 |
+
for (const poseNode of poseNodes) {
|
116 |
+
const openposeResults = JSON.parse(app.nodeOutputs[poseNode.id].openpose_json[0])
|
117 |
+
console.log(openposeResults) //An array containing Openpose JSON for each frame
|
118 |
+
}
|
119 |
+
```
|
120 |
+
|
121 |
+
For API users:
|
122 |
+
Javascript
|
123 |
+
```js
|
124 |
+
import fetch from "node-fetch" //Remember to add "type": "module" to "package.json"
|
125 |
+
async function main() {
|
126 |
+
const promptId = '792c1905-ecfe-41f4-8114-83e6a4a09a9f' //Too lazy to POST /queue
|
127 |
+
let history = await fetch(`http://127.0.0.1:8188/history/${promptId}`).then(re => re.json())
|
128 |
+
history = history[promptId]
|
129 |
+
const nodeOutputs = Object.values(history.outputs).filter(output => output.openpose_json)
|
130 |
+
for (const nodeOutput of nodeOutputs) {
|
131 |
+
const openposeResults = JSON.parse(nodeOutput.openpose_json[0])
|
132 |
+
console.log(openposeResults) //An array containing Openpose JSON for each frame
|
133 |
+
}
|
134 |
+
}
|
135 |
+
main()
|
136 |
+
```
|
137 |
+
|
138 |
+
Python
|
139 |
+
```py
|
140 |
+
import json, urllib.request
|
141 |
+
|
142 |
+
server_address = "127.0.0.1:8188"
|
143 |
+
prompt_id = '' #Too lazy to POST /queue
|
144 |
+
|
145 |
+
def get_history(prompt_id):
|
146 |
+
with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response:
|
147 |
+
return json.loads(response.read())
|
148 |
+
|
149 |
+
history = get_history(prompt_id)[prompt_id]
|
150 |
+
for o in history['outputs']:
|
151 |
+
for node_id in history['outputs']:
|
152 |
+
node_output = history['outputs'][node_id]
|
153 |
+
if 'openpose_json' in node_output:
|
154 |
+
print(json.loads(node_output['openpose_json'][0])) #An list containing Openpose JSON for each frame
|
155 |
+
```
|
156 |
+
## Semantic Segmentation
|
157 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
158 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
159 |
+
| OneFormer ADE20K Segmentor | oneformer_ade20k | control_v11p_sd15_seg |
|
160 |
+
| OneFormer COCO Segmentor | oneformer_coco | control_v11p_sd15_seg |
|
161 |
+
| UniFormer Segmentor | segmentation |control_sd15_seg <br> control_v11p_sd15_seg|
|
162 |
+
|
163 |
+
## T2IAdapter-only
|
164 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
165 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
166 |
+
| Color Pallete | color | t2iadapter_color |
|
167 |
+
| Content Shuffle | shuffle | t2iadapter_style |
|
168 |
+
|
169 |
+
## Recolor
|
170 |
+
| Preprocessor Node | sd-webui-controlnet/other | ControlNet/T2I-Adapter |
|
171 |
+
|-----------------------------|---------------------------|-------------------------------------------|
|
172 |
+
| Image Luminance | recolor_luminance | [ioclab_sd15_recolor](https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/ioclab_sd15_recolor.safetensors) <br> [sai_xl_recolor_256lora](https://huggingface.co/lllyasviel/sd_control_collection/resolve/main/sai_xl_recolor_256lora.safetensors) <br> [bdsqlsz_controlllite_xl_recolor_luminance](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/resolve/main/bdsqlsz_controlllite_xl_recolor_luminance.safetensors) |
|
173 |
+
| Image Intensity | recolor_intensity | Idk. Maybe same as above? |
|
174 |
+
|
175 |
+
# Examples
|
176 |
+
> A picture is worth a thousand words
|
177 |
+
|
178 |
+

|
179 |
+

|
180 |
+
|
181 |
+
# Testing workflow
|
182 |
+
https://github.com/Fannovel16/comfyui_controlnet_aux/blob/main/examples/ExecuteAll.png
|
183 |
+
Input image: https://github.com/Fannovel16/comfyui_controlnet_aux/blob/main/examples/comfyui-controlnet-aux-logo.png
|
184 |
+
|
185 |
+
# Q&A:
|
186 |
+
## Why some nodes doesn't appear after I installed this repo?
|
187 |
+
|
188 |
+
This repo has a new mechanism which will skip any custom node can't be imported. If you meet this case, please create a issue on [Issues tab](https://github.com/Fannovel16/comfyui_controlnet_aux/issues) with the log from the command line.
|
189 |
+
|
190 |
+
## DWPose/AnimalPose only uses CPU so it's so slow. How can I make it use GPU?
|
191 |
+
There are two ways to speed-up DWPose: using TorchScript checkpoints (.torchscript.pt) checkpoints or ONNXRuntime (.onnx). TorchScript way is little bit slower than ONNXRuntime but doesn't require any additional library and still way way faster than CPU.
|
192 |
+
|
193 |
+
A torchscript bbox detector is compatiable with an onnx pose estimator and vice versa.
|
194 |
+
### TorchScript
|
195 |
+
Set `bbox_detector` and `pose_estimator` according to this picture. You can try other bbox detector endings with `.torchscript.pt` to reduce bbox detection time if input images are ideal.
|
196 |
+

|
197 |
+
### ONNXRuntime
|
198 |
+
If onnxruntime is installed successfully and the checkpoint used endings with `.onnx`, it will replace default cv2 backend to take advantage of GPU. Note that if you are using NVidia card, this method currently can only works on CUDA 11.8 (ComfyUI_windows_portable_nvidia_cu118_or_cpu.7z) unless you compile onnxruntime yourself.
|
199 |
+
|
200 |
+
1. Know your onnxruntime build:
|
201 |
+
* * NVidia CUDA 11.x or bellow/AMD GPU: `onnxruntime-gpu`
|
202 |
+
* * NVidia CUDA 12.x: `onnxruntime-gpu --extra-index-url https://aiinfra.pkgs.visualstudio.com/PublicPackages/_packaging/onnxruntime-cuda-12/pypi/simple/`
|
203 |
+
* * DirectML: `onnxruntime-directml`
|
204 |
+
* * OpenVINO: `onnxruntime-openvino`
|
205 |
+
|
206 |
+
Note that if this is your first time using ComfyUI, please test if it can run on your device before doing next steps.
|
207 |
+
|
208 |
+
2. Add it into `requirements.txt`
|
209 |
+
|
210 |
+
3. Run `install.bat` or pip command mentioned in Installation
|
211 |
+
|
212 |
+

|
213 |
+
|
214 |
+
# Assets files of preprocessors
|
215 |
+
* anime_face_segment: [bdsqlsz/qinglong_controlnet-lllite/Annotators/UNet.pth](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/blob/main/Annotators/UNet.pth), [anime-seg/isnetis.ckpt](https://huggingface.co/skytnt/anime-seg/blob/main/isnetis.ckpt)
|
216 |
+
* densepose: [LayerNorm/DensePose-TorchScript-with-hint-image/densepose_r50_fpn_dl.torchscript](https://huggingface.co/LayerNorm/DensePose-TorchScript-with-hint-image/blob/main/densepose_r50_fpn_dl.torchscript)
|
217 |
+
* dwpose:
|
218 |
+
* * bbox_detector: Either [yzd-v/DWPose/yolox_l.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx), [hr16/yolox-onnx/yolox_l.torchscript.pt](https://huggingface.co/hr16/yolox-onnx/blob/main/yolox_l.torchscript.pt), [hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_l_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_m_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_s_fp16.onnx)
|
219 |
+
* * pose_estimator: Either [hr16/DWPose-TorchScript-BatchSize5/dw-ll_ucoco_384_bs5.torchscript.pt](https://huggingface.co/hr16/DWPose-TorchScript-BatchSize5/blob/main/dw-ll_ucoco_384_bs5.torchscript.pt), [yzd-v/DWPose/dw-ll_ucoco_384.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/dw-ll_ucoco_384.onnx)
|
220 |
+
* animal_pose (ap10k):
|
221 |
+
* * bbox_detector: Either [yzd-v/DWPose/yolox_l.onnx](https://huggingface.co/yzd-v/DWPose/blob/main/yolox_l.onnx), [hr16/yolox-onnx/yolox_l.torchscript.pt](https://huggingface.co/hr16/yolox-onnx/blob/main/yolox_l.torchscript.pt), [hr16/yolo-nas-fp16/yolo_nas_l_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_l_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_m_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_m_fp16.onnx), [hr16/yolo-nas-fp16/yolo_nas_s_fp16.onnx](https://huggingface.co/hr16/yolo-nas-fp16/blob/main/yolo_nas_s_fp16.onnx)
|
222 |
+
* * pose_estimator: Either [hr16/DWPose-TorchScript-BatchSize5/rtmpose-m_ap10k_256_bs5.torchscript.pt](https://huggingface.co/hr16/DWPose-TorchScript-BatchSize5/blob/main/rtmpose-m_ap10k_256_bs5.torchscript.pt), [hr16/UnJIT-DWPose/rtmpose-m_ap10k_256.onnx](https://huggingface.co/hr16/UnJIT-DWPose/blob/main/rtmpose-m_ap10k_256.onnx)
|
223 |
+
* hed: [lllyasviel/Annotators/ControlNetHED.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/ControlNetHED.pth)
|
224 |
+
* leres: [lllyasviel/Annotators/res101.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/res101.pth), [lllyasviel/Annotators/latest_net_G.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/latest_net_G.pth)
|
225 |
+
* lineart: [lllyasviel/Annotators/sk_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/sk_model.pth), [lllyasviel/Annotators/sk_model2.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/sk_model2.pth)
|
226 |
+
* lineart_anime: [lllyasviel/Annotators/netG.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/netG.pth)
|
227 |
+
* manga_line: [lllyasviel/Annotators/erika.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/erika.pth)
|
228 |
+
* mesh_graphormer: [hr16/ControlNet-HandRefiner-pruned/graphormer_hand_state_dict.bin](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/graphormer_hand_state_dict.bin), [hr16/ControlNet-HandRefiner-pruned/hrnetv2_w64_imagenet_pretrained.pth](https://huggingface.co/hr16/ControlNet-HandRefiner-pruned/blob/main/hrnetv2_w64_imagenet_pretrained.pth)
|
229 |
+
* midas: [lllyasviel/Annotators/dpt_hybrid-midas-501f0c75.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/dpt_hybrid-midas-501f0c75.pt)
|
230 |
+
* mlsd: [lllyasviel/Annotators/mlsd_large_512_fp32.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/mlsd_large_512_fp32.pth)
|
231 |
+
* normalbae: [lllyasviel/Annotators/scannet.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/scannet.pt)
|
232 |
+
* oneformer: [lllyasviel/Annotators/250_16_swin_l_oneformer_ade20k_160k.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/250_16_swin_l_oneformer_ade20k_160k.pth)
|
233 |
+
* open_pose: [lllyasviel/Annotators/body_pose_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/body_pose_model.pth), [lllyasviel/Annotators/hand_pose_model.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/hand_pose_model.pth), [lllyasviel/Annotators/facenet.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/facenet.pth)
|
234 |
+
* pidi: [lllyasviel/Annotators/table5_pidinet.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/table5_pidinet.pth)
|
235 |
+
* sam: [dhkim2810/MobileSAM/mobile_sam.pt](https://huggingface.co/dhkim2810/MobileSAM/blob/main/mobile_sam.pt)
|
236 |
+
* uniformer: [lllyasviel/Annotators/upernet_global_small.pth](https://huggingface.co/lllyasviel/Annotators/blob/main/upernet_global_small.pth)
|
237 |
+
* zoe: [lllyasviel/Annotators/ZoeD_M12_N.pt](https://huggingface.co/lllyasviel/Annotators/blob/main/ZoeD_M12_N.pt)
|
238 |
+
* teed: [bdsqlsz/qinglong_controlnet-lllite/7_model.pth](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite/blob/main/Annotators/7_model.pth)
|
239 |
+
* depth_anything: Either [LiheYoung/Depth-Anything/checkpoints/depth_anything_vitl14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitl14.pth), [LiheYoung/Depth-Anything/checkpoints/depth_anything_vitb14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vitb14.pth) or [LiheYoung/Depth-Anything/checkpoints/depth_anything_vits14.pth](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints/depth_anything_vits14.pth)
|
240 |
+
* diffusion_edge: Either [hr16/Diffusion-Edge/diffusion_edge_indoor.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_indoor.pt), [hr16/Diffusion-Edge/diffusion_edge_urban.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_urban.pt) or [hr16/Diffusion-Edge/diffusion_edge_natrual.pt](https://huggingface.co/hr16/Diffusion-Edge/blob/main/diffusion_edge_natrual.pt)
|
241 |
+
* unimatch: Either [hr16/Unimatch/gmflow-scale2-regrefine6-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale2-regrefine6-mixdata.pth), [hr16/Unimatch/gmflow-scale2-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale2-mixdata.pth) or [hr16/Unimatch/gmflow-scale1-mixdata.pth](https://huggingface.co/hr16/Unimatch/blob/main/gmflow-scale1-mixdata.pth)
|
242 |
+
* zoe_depth_anything: Either [LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_metric_depth/depth_anything_metric_depth_indoor.pt) or [LiheYoung/Depth-Anything/checkpoints_metric_depth/depth_anything_metric_depth_outdoor.pt](https://huggingface.co/spaces/LiheYoung/Depth-Anything/blob/main/checkpoints_metric_depth/depth_anything_metric_depth_outdoor.pt)
|
243 |
+
# 2000 Stars 😄
|
244 |
+
<a href="https://star-history.com/#Fannovel16/comfyui_controlnet_aux&Date">
|
245 |
+
<picture>
|
246 |
+
<source media="(prefers-color-scheme: dark)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date&theme=dark" />
|
247 |
+
<source media="(prefers-color-scheme: light)" srcset="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" />
|
248 |
+
<img alt="Star History Chart" src="https://api.star-history.com/svg?repos=Fannovel16/comfyui_controlnet_aux&type=Date" />
|
249 |
+
</picture>
|
250 |
+
</a>
|
251 |
+
|
252 |
+
Thanks for yalls supports. I never thought the graph for stars would be linear lol.
|
custom_nodes/comfyui_controlnet_aux/UPDATES.md
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
* `AIO Aux Preprocessor` intergrating all loadable aux preprocessors as dropdown options. Easy to copy, paste and get the preprocessor faster.
|
2 |
+
* Added OpenPose-format JSON output from OpenPose Preprocessor and DWPose Preprocessor. Checks [here](#faces-and-poses).
|
3 |
+
* Fixed wrong model path when downloading DWPose.
|
4 |
+
* Make hint images less blurry.
|
5 |
+
* Added `resolution` option, `PixelPerfectResolution` and `HintImageEnchance` nodes (TODO: Documentation).
|
6 |
+
* Added `RAFT Optical Flow Embedder` for TemporalNet2 (TODO: Workflow example).
|
7 |
+
* Fixed opencv's conflicts between this extension, [ReActor](https://github.com/Gourieff/comfyui-reactor-node) and Roop. Thanks `Gourieff` for [the solution](https://github.com/Fannovel16/comfyui_controlnet_aux/issues/7#issuecomment-1734319075)!
|
8 |
+
* RAFT is removed as the code behind it doesn't match what what the original code does
|
9 |
+
* Changed `lineart`'s display name from `Normal Lineart` to `Realistic Lineart`. This change won't affect old workflows
|
10 |
+
* Added support for `onnxruntime` to speed-up DWPose (see the Q&A)
|
11 |
+
* Fixed TypeError: expected size to be one of int or Tuple[int] or Tuple[int, int] or Tuple[int, int, int], but got size with types [<class 'numpy.int64'>, <class 'numpy.int64'>]: [Issue](https://github.com/Fannovel16/comfyui_controlnet_aux/issues/2), [PR](https://github.com/Fannovel16/comfyui_controlnet_aux/pull/71))
|
12 |
+
* Fixed ImageGenResolutionFromImage mishape (https://github.com/Fannovel16/comfyui_controlnet_aux/pull/74)
|
13 |
+
* Fixed LeRes and MiDaS's incomatipility with MPS device
|
14 |
+
* Fixed checking DWPose onnxruntime session multiple times: https://github.com/Fannovel16/comfyui_controlnet_aux/issues/89)
|
15 |
+
* Added `Anime Face Segmentor` (in `ControlNet Preprocessors/Semantic Segmentation`) for [ControlNet AnimeFaceSegmentV2](https://huggingface.co/bdsqlsz/qinglong_controlnet-lllite#animefacesegmentv2). Checks [here](#anime-face-segmentor)
|
16 |
+
* Change download functions and fix [download error](https://github.com/Fannovel16/comfyui_controlnet_aux/issues/39): [PR](https://github.com/Fannovel16/comfyui_controlnet_aux/pull/96)
|
17 |
+
* Caching DWPose Onnxruntime during the first use of DWPose node instead of ComfyUI startup
|
18 |
+
* Added alternative YOLOX models for faster speed when using DWPose
|
19 |
+
* Added alternative DWPose models
|
20 |
+
* Implemented the preprocessor for [AnimalPose ControlNet](https://github.com/abehonest/ControlNet_AnimalPose/tree/main). Check [Animal Pose AP-10K](#animal-pose-ap-10k)
|
21 |
+
* Added YOLO-NAS models which are drop-in replacements of YOLOX
|
22 |
+
* Fixed Openpose Face/Hands no longer detecting: https://github.com/Fannovel16/comfyui_controlnet_aux/issues/54
|
23 |
+
* Added TorchScript implementation of DWPose and AnimalPose
|
24 |
+
* Added TorchScript implementation of DensePose from [Colab notebook](https://colab.research.google.com/drive/16hcaaKs210ivpxjoyGNuvEXZD4eqOOSQ) which doesn't require detectron2. [Example](#densepose). Thanks [@LayerNome](https://github.com/Layer-norm) for fixing bugs related.
|
25 |
+
* Added Standard Lineart Preprocessor
|
26 |
+
* Fixed OpenPose misplacements in some cases
|
27 |
+
* Added Mesh Graphormer - Hand Depth Map & Mask
|
28 |
+
* Misaligned hands bug from MeshGraphormer was fixed
|
29 |
+
* Added more mask options for MeshGraphormer
|
30 |
+
* Added Save Pose Keypoint node for editing
|
31 |
+
* Added Unimatch Optical Flow
|
32 |
+
* Added Depth Anything & Zoe Depth Anything
|
33 |
+
* Removed resolution field from Unimatch Optical Flow as that interpolating optical flow seems unstable
|
34 |
+
* Added TEED Soft-Edge Preprocessor
|
35 |
+
* Added DiffusionEdge
|
36 |
+
* Added Image Luminance and Image Intensity
|
37 |
+
* Added Normal DSINE
|
38 |
+
* Added TTPlanet Tile (09/05/2024, DD/MM/YYYY)
|
39 |
+
* Added AnyLine, Metric3D (18/05/2024)
|
40 |
+
* Added Depth Anything V2 (16/06/2024)
|
41 |
+
* Added Union model of ControlNet and preprocessors
|
42 |
+

|
43 |
+
* Refactor INPUT_TYPES and add Execute All node during the process of learning [Execution Model Inversion](https://github.com/comfyanonymous/ComfyUI/pull/2666)
|
44 |
+
* Added scale_stick_for_xinsr_cn (https://github.com/Fannovel16/comfyui_controlnet_aux/issues/447) (09/04/2024)
|
custom_nodes/comfyui_controlnet_aux/__init__.py
ADDED
@@ -0,0 +1,214 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import sys, os
|
2 |
+
from .utils import here, define_preprocessor_inputs, INPUT
|
3 |
+
from pathlib import Path
|
4 |
+
import traceback
|
5 |
+
import importlib
|
6 |
+
from .log import log, blue_text, cyan_text, get_summary, get_label
|
7 |
+
from .hint_image_enchance import NODE_CLASS_MAPPINGS as HIE_NODE_CLASS_MAPPINGS
|
8 |
+
from .hint_image_enchance import NODE_DISPLAY_NAME_MAPPINGS as HIE_NODE_DISPLAY_NAME_MAPPINGS
|
9 |
+
#Ref: https://github.com/comfyanonymous/ComfyUI/blob/76d53c4622fc06372975ed2a43ad345935b8a551/nodes.py#L17
|
10 |
+
sys.path.insert(0, str(Path(here, "src").resolve()))
|
11 |
+
for pkg_name in ["custom_controlnet_aux", "custom_mmpkg"]:
|
12 |
+
sys.path.append(str(Path(here, "src", pkg_name).resolve()))
|
13 |
+
|
14 |
+
#Enable CPU fallback for ops not being supported by MPS like upsample_bicubic2d.out
|
15 |
+
#https://github.com/pytorch/pytorch/issues/77764
|
16 |
+
#https://github.com/Fannovel16/comfyui_controlnet_aux/issues/2#issuecomment-1763579485
|
17 |
+
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = os.getenv("PYTORCH_ENABLE_MPS_FALLBACK", '1')
|
18 |
+
|
19 |
+
|
20 |
+
def load_nodes():
|
21 |
+
shorted_errors = []
|
22 |
+
full_error_messages = []
|
23 |
+
node_class_mappings = {}
|
24 |
+
node_display_name_mappings = {}
|
25 |
+
|
26 |
+
for filename in (here / "node_wrappers").iterdir():
|
27 |
+
module_name = filename.stem
|
28 |
+
if module_name.startswith('.'): continue #Skip hidden files created by the OS (e.g. [.DS_Store](https://en.wikipedia.org/wiki/.DS_Store))
|
29 |
+
try:
|
30 |
+
module = importlib.import_module(
|
31 |
+
f".node_wrappers.{module_name}", package=__package__
|
32 |
+
)
|
33 |
+
node_class_mappings.update(getattr(module, "NODE_CLASS_MAPPINGS"))
|
34 |
+
if hasattr(module, "NODE_DISPLAY_NAME_MAPPINGS"):
|
35 |
+
node_display_name_mappings.update(getattr(module, "NODE_DISPLAY_NAME_MAPPINGS"))
|
36 |
+
|
37 |
+
log.debug(f"Imported {module_name} nodes")
|
38 |
+
|
39 |
+
except AttributeError:
|
40 |
+
pass # wip nodes
|
41 |
+
except Exception:
|
42 |
+
error_message = traceback.format_exc()
|
43 |
+
full_error_messages.append(error_message)
|
44 |
+
error_message = error_message.splitlines()[-1]
|
45 |
+
shorted_errors.append(
|
46 |
+
f"Failed to import module {module_name} because {error_message}"
|
47 |
+
)
|
48 |
+
|
49 |
+
if len(shorted_errors) > 0:
|
50 |
+
full_err_log = '\n\n'.join(full_error_messages)
|
51 |
+
print(f"\n\nFull error log from comfyui_controlnet_aux: \n{full_err_log}\n\n")
|
52 |
+
log.info(
|
53 |
+
f"Some nodes failed to load:\n\t"
|
54 |
+
+ "\n\t".join(shorted_errors)
|
55 |
+
+ "\n\n"
|
56 |
+
+ "Check that you properly installed the dependencies.\n"
|
57 |
+
+ "If you think this is a bug, please report it on the github page (https://github.com/Fannovel16/comfyui_controlnet_aux/issues)"
|
58 |
+
)
|
59 |
+
return node_class_mappings, node_display_name_mappings
|
60 |
+
|
61 |
+
AUX_NODE_MAPPINGS, AUX_DISPLAY_NAME_MAPPINGS = load_nodes()
|
62 |
+
|
63 |
+
#For nodes not mapping image to image or has special requirements
|
64 |
+
AIO_NOT_SUPPORTED = ["InpaintPreprocessor", "MeshGraphormer+ImpactDetector-DepthMapPreprocessor", "DiffusionEdge_Preprocessor"]
|
65 |
+
AIO_NOT_SUPPORTED += ["SavePoseKpsAsJsonFile", "FacialPartColoringFromPoseKps", "UpperBodyTrackingFromPoseKps", "RenderPeopleKps", "RenderAnimalKps"]
|
66 |
+
AIO_NOT_SUPPORTED += ["Unimatch_OptFlowPreprocessor", "MaskOptFlow"]
|
67 |
+
|
68 |
+
def preprocessor_options():
|
69 |
+
auxs = list(AUX_NODE_MAPPINGS.keys())
|
70 |
+
auxs.insert(0, "none")
|
71 |
+
for name in AIO_NOT_SUPPORTED:
|
72 |
+
if name in auxs:
|
73 |
+
auxs.remove(name)
|
74 |
+
return auxs
|
75 |
+
|
76 |
+
|
77 |
+
PREPROCESSOR_OPTIONS = preprocessor_options()
|
78 |
+
|
79 |
+
class AIO_Preprocessor:
|
80 |
+
@classmethod
|
81 |
+
def INPUT_TYPES(s):
|
82 |
+
return define_preprocessor_inputs(
|
83 |
+
preprocessor=INPUT.COMBO(PREPROCESSOR_OPTIONS, default="none"),
|
84 |
+
resolution=INPUT.RESOLUTION()
|
85 |
+
)
|
86 |
+
|
87 |
+
RETURN_TYPES = ("IMAGE",)
|
88 |
+
FUNCTION = "execute"
|
89 |
+
|
90 |
+
CATEGORY = "ControlNet Preprocessors"
|
91 |
+
|
92 |
+
def execute(self, preprocessor, image, resolution=512):
|
93 |
+
if preprocessor == "none":
|
94 |
+
return (image, )
|
95 |
+
else:
|
96 |
+
aux_class = AUX_NODE_MAPPINGS[preprocessor]
|
97 |
+
input_types = aux_class.INPUT_TYPES()
|
98 |
+
input_types = {
|
99 |
+
**input_types["required"],
|
100 |
+
**(input_types["optional"] if "optional" in input_types else {})
|
101 |
+
}
|
102 |
+
params = {}
|
103 |
+
for name, input_type in input_types.items():
|
104 |
+
if name == "image":
|
105 |
+
params[name] = image
|
106 |
+
continue
|
107 |
+
|
108 |
+
if name == "resolution":
|
109 |
+
params[name] = resolution
|
110 |
+
continue
|
111 |
+
|
112 |
+
if len(input_type) == 2 and ("default" in input_type[1]):
|
113 |
+
params[name] = input_type[1]["default"]
|
114 |
+
continue
|
115 |
+
|
116 |
+
default_values = { "INT": 0, "FLOAT": 0.0 }
|
117 |
+
if input_type[0] in default_values:
|
118 |
+
params[name] = default_values[input_type[0]]
|
119 |
+
|
120 |
+
return getattr(aux_class(), aux_class.FUNCTION)(**params)
|
121 |
+
|
122 |
+
class ControlNetAuxSimpleAddText:
|
123 |
+
@classmethod
|
124 |
+
def INPUT_TYPES(s):
|
125 |
+
return dict(
|
126 |
+
required=dict(image=INPUT.IMAGE(), text=INPUT.STRING())
|
127 |
+
)
|
128 |
+
|
129 |
+
RETURN_TYPES = ("IMAGE",)
|
130 |
+
FUNCTION = "execute"
|
131 |
+
CATEGORY = "ControlNet Preprocessors"
|
132 |
+
def execute(self, image, text):
|
133 |
+
from PIL import Image, ImageDraw, ImageFont
|
134 |
+
import numpy as np
|
135 |
+
import torch
|
136 |
+
|
137 |
+
font = ImageFont.truetype(str((here / "NotoSans-Regular.ttf").resolve()), 40)
|
138 |
+
img = Image.fromarray(image[0].cpu().numpy().__mul__(255.).astype(np.uint8))
|
139 |
+
ImageDraw.Draw(img).text((0,0), text, fill=(0,255,0), font=font)
|
140 |
+
return (torch.from_numpy(np.array(img)).unsqueeze(0) / 255.,)
|
141 |
+
|
142 |
+
class ExecuteAllControlNetPreprocessors:
|
143 |
+
@classmethod
|
144 |
+
def INPUT_TYPES(s):
|
145 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
146 |
+
RETURN_TYPES = ("IMAGE",)
|
147 |
+
FUNCTION = "execute"
|
148 |
+
|
149 |
+
CATEGORY = "ControlNet Preprocessors"
|
150 |
+
|
151 |
+
def execute(self, image, resolution=512):
|
152 |
+
try:
|
153 |
+
from comfy_execution.graph_utils import GraphBuilder
|
154 |
+
except:
|
155 |
+
raise RuntimeError("ExecuteAllControlNetPreprocessor requries [Execution Model Inversion](https://github.com/comfyanonymous/ComfyUI/commit/5cfe38). Update ComfyUI/SwarmUI to get this feature")
|
156 |
+
|
157 |
+
graph = GraphBuilder()
|
158 |
+
curr_outputs = []
|
159 |
+
for preprocc in PREPROCESSOR_OPTIONS:
|
160 |
+
preprocc_node = graph.node("AIO_Preprocessor", preprocessor=preprocc, image=image, resolution=resolution)
|
161 |
+
hint_img = preprocc_node.out(0)
|
162 |
+
add_text_node = graph.node("ControlNetAuxSimpleAddText", image=hint_img, text=preprocc)
|
163 |
+
curr_outputs.append(add_text_node.out(0))
|
164 |
+
|
165 |
+
while len(curr_outputs) > 1:
|
166 |
+
_outputs = []
|
167 |
+
for i in range(0, len(curr_outputs), 2):
|
168 |
+
if i+1 < len(curr_outputs):
|
169 |
+
image_batch = graph.node("ImageBatch", image1=curr_outputs[i], image2=curr_outputs[i+1])
|
170 |
+
_outputs.append(image_batch.out(0))
|
171 |
+
else:
|
172 |
+
_outputs.append(curr_outputs[i])
|
173 |
+
curr_outputs = _outputs
|
174 |
+
|
175 |
+
return {
|
176 |
+
"result": (curr_outputs[0],),
|
177 |
+
"expand": graph.finalize(),
|
178 |
+
}
|
179 |
+
|
180 |
+
class ControlNetPreprocessorSelector:
|
181 |
+
@classmethod
|
182 |
+
def INPUT_TYPES(s):
|
183 |
+
return {
|
184 |
+
"required": {
|
185 |
+
"preprocessor": (PREPROCESSOR_OPTIONS,),
|
186 |
+
}
|
187 |
+
}
|
188 |
+
|
189 |
+
RETURN_TYPES = (PREPROCESSOR_OPTIONS,)
|
190 |
+
RETURN_NAMES = ("preprocessor",)
|
191 |
+
FUNCTION = "get_preprocessor"
|
192 |
+
|
193 |
+
CATEGORY = "ControlNet Preprocessors"
|
194 |
+
|
195 |
+
def get_preprocessor(self, preprocessor: str):
|
196 |
+
return (preprocessor,)
|
197 |
+
|
198 |
+
|
199 |
+
NODE_CLASS_MAPPINGS = {
|
200 |
+
**AUX_NODE_MAPPINGS,
|
201 |
+
"AIO_Preprocessor": AIO_Preprocessor,
|
202 |
+
"ControlNetPreprocessorSelector": ControlNetPreprocessorSelector,
|
203 |
+
**HIE_NODE_CLASS_MAPPINGS,
|
204 |
+
"ExecuteAllControlNetPreprocessors": ExecuteAllControlNetPreprocessors,
|
205 |
+
"ControlNetAuxSimpleAddText": ControlNetAuxSimpleAddText
|
206 |
+
}
|
207 |
+
|
208 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
209 |
+
**AUX_DISPLAY_NAME_MAPPINGS,
|
210 |
+
"AIO_Preprocessor": "AIO Aux Preprocessor",
|
211 |
+
"ControlNetPreprocessorSelector": "Preprocessor Selector",
|
212 |
+
**HIE_NODE_DISPLAY_NAME_MAPPINGS,
|
213 |
+
"ExecuteAllControlNetPreprocessors": "Execute All ControlNet Preprocessors"
|
214 |
+
}
|
custom_nodes/comfyui_controlnet_aux/config.example.yaml
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# this is an example for config.yaml file, you can rename it to config.yaml if you want to use it
|
2 |
+
# ###############################################################################################
|
3 |
+
# This path is for custom pressesor models base folder. default is "./ckpts"
|
4 |
+
# you can also use absolute paths like: "/root/ComfyUI/custom_nodes/comfyui_controlnet_aux/ckpts" or "D:\\ComfyUI\\custom_nodes\\comfyui_controlnet_aux\\ckpts"
|
5 |
+
annotator_ckpts_path: "./ckpts"
|
6 |
+
# ###############################################################################################
|
7 |
+
# This path is for downloading temporary files.
|
8 |
+
# You SHOULD use absolute path for this like"D:\\temp", DO NOT use relative paths. Empty for default.
|
9 |
+
custom_temp_path:
|
10 |
+
# ###############################################################################################
|
11 |
+
# if you already have downloaded ckpts via huggingface hub into default cache path like: ~/.cache/huggingface/hub, you can set this True to use symlinks to save space
|
12 |
+
USE_SYMLINKS: False
|
13 |
+
# ###############################################################################################
|
14 |
+
# EP_list is a list of execution providers for onnxruntime, if one of them is not available or not working well, you can delete that provider from here(config.yaml)
|
15 |
+
# you can find all available providers here: https://onnxruntime.ai/docs/execution-providers
|
16 |
+
# for example, if you have CUDA installed, you can set it to: ["CUDAExecutionProvider", "CPUExecutionProvider"]
|
17 |
+
# empty list or only keep ["CPUExecutionProvider"] means you use cv2.dnn.readNetFromONNX to load onnx models
|
18 |
+
# if your onnx models can only run on the CPU or have other issues, we recommend using pt model instead.
|
19 |
+
# default value is ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider", "CPUExecutionProvider"]
|
20 |
+
EP_list: ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider", "CPUExecutionProvider"]
|
custom_nodes/comfyui_controlnet_aux/dev_interface.py
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
from utils import here
|
3 |
+
import sys
|
4 |
+
sys.path.append(str(Path(here, "src")))
|
5 |
+
|
6 |
+
from custom_controlnet_aux import *
|
custom_nodes/comfyui_controlnet_aux/examples/CNAuxBanner.jpg
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/ExecuteAll.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/ExecuteAll1.jpg
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/ExecuteAll2.jpg
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/comfyui-controlnet-aux-logo.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_animal_pose.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_anime_face_segmentor.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_anyline.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_densepose.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_depth_anything.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_depth_anything_v2.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_dsine.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_marigold.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_marigold_flat.jpg
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_mesh_graphormer.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_metric3d.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_onnx.png
ADDED
![]() |
custom_nodes/comfyui_controlnet_aux/examples/example_recolor.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_save_kps.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_teed.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_torchscript.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/examples/example_unimatch.png
ADDED
![]() |
Git LFS Details
|
custom_nodes/comfyui_controlnet_aux/hint_image_enchance.py
ADDED
@@ -0,0 +1,233 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from .log import log
|
2 |
+
from .utils import ResizeMode, safe_numpy
|
3 |
+
import numpy as np
|
4 |
+
import torch
|
5 |
+
import cv2
|
6 |
+
from .utils import get_unique_axis0
|
7 |
+
from .lvminthin import nake_nms, lvmin_thin
|
8 |
+
|
9 |
+
MAX_IMAGEGEN_RESOLUTION = 8192 #https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L42
|
10 |
+
RESIZE_MODES = [ResizeMode.RESIZE.value, ResizeMode.INNER_FIT.value, ResizeMode.OUTER_FIT.value]
|
11 |
+
|
12 |
+
#Port from https://github.com/Mikubill/sd-webui-controlnet/blob/e67e017731aad05796b9615dc6eadce911298ea1/internal_controlnet/external_code.py#L89
|
13 |
+
class PixelPerfectResolution:
|
14 |
+
@classmethod
|
15 |
+
def INPUT_TYPES(s):
|
16 |
+
return {
|
17 |
+
"required": {
|
18 |
+
"original_image": ("IMAGE", ),
|
19 |
+
"image_gen_width": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
|
20 |
+
"image_gen_height": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
|
21 |
+
#https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L854
|
22 |
+
"resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value})
|
23 |
+
}
|
24 |
+
}
|
25 |
+
|
26 |
+
RETURN_TYPES = ("INT",)
|
27 |
+
RETURN_NAMES = ("RESOLUTION (INT)", )
|
28 |
+
FUNCTION = "execute"
|
29 |
+
|
30 |
+
CATEGORY = "ControlNet Preprocessors"
|
31 |
+
|
32 |
+
def execute(self, original_image, image_gen_width, image_gen_height, resize_mode):
|
33 |
+
_, raw_H, raw_W, _ = original_image.shape
|
34 |
+
|
35 |
+
k0 = float(image_gen_height) / float(raw_H)
|
36 |
+
k1 = float(image_gen_width) / float(raw_W)
|
37 |
+
|
38 |
+
if resize_mode == ResizeMode.OUTER_FIT.value:
|
39 |
+
estimation = min(k0, k1) * float(min(raw_H, raw_W))
|
40 |
+
else:
|
41 |
+
estimation = max(k0, k1) * float(min(raw_H, raw_W))
|
42 |
+
|
43 |
+
log.debug(f"Pixel Perfect Computation:")
|
44 |
+
log.debug(f"resize_mode = {resize_mode}")
|
45 |
+
log.debug(f"raw_H = {raw_H}")
|
46 |
+
log.debug(f"raw_W = {raw_W}")
|
47 |
+
log.debug(f"target_H = {image_gen_height}")
|
48 |
+
log.debug(f"target_W = {image_gen_width}")
|
49 |
+
log.debug(f"estimation = {estimation}")
|
50 |
+
|
51 |
+
return (int(np.round(estimation)), )
|
52 |
+
|
53 |
+
class HintImageEnchance:
|
54 |
+
@classmethod
|
55 |
+
def INPUT_TYPES(s):
|
56 |
+
return {
|
57 |
+
"required": {
|
58 |
+
"hint_image": ("IMAGE", ),
|
59 |
+
"image_gen_width": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
|
60 |
+
"image_gen_height": ("INT", {"default": 512, "min": 64, "max": MAX_IMAGEGEN_RESOLUTION, "step": 8}),
|
61 |
+
#https://github.com/comfyanonymous/ComfyUI/blob/c910b4a01ca58b04e5d4ab4c747680b996ada02b/nodes.py#L854
|
62 |
+
"resize_mode": (RESIZE_MODES, {"default": ResizeMode.RESIZE.value})
|
63 |
+
}
|
64 |
+
}
|
65 |
+
|
66 |
+
RETURN_TYPES = ("IMAGE",)
|
67 |
+
FUNCTION = "execute"
|
68 |
+
|
69 |
+
CATEGORY = "ControlNet Preprocessors"
|
70 |
+
def execute(self, hint_image, image_gen_width, image_gen_height, resize_mode):
|
71 |
+
outs = []
|
72 |
+
for single_hint_image in hint_image:
|
73 |
+
np_hint_image = np.asarray(single_hint_image * 255., dtype=np.uint8)
|
74 |
+
|
75 |
+
if resize_mode == ResizeMode.RESIZE.value:
|
76 |
+
np_hint_image = self.execute_resize(np_hint_image, image_gen_width, image_gen_height)
|
77 |
+
elif resize_mode == ResizeMode.OUTER_FIT.value:
|
78 |
+
np_hint_image = self.execute_outer_fit(np_hint_image, image_gen_width, image_gen_height)
|
79 |
+
else:
|
80 |
+
np_hint_image = self.execute_inner_fit(np_hint_image, image_gen_width, image_gen_height)
|
81 |
+
|
82 |
+
outs.append(torch.from_numpy(np_hint_image.astype(np.float32) / 255.0))
|
83 |
+
|
84 |
+
return (torch.stack(outs, dim=0),)
|
85 |
+
|
86 |
+
def execute_resize(self, detected_map, w, h):
|
87 |
+
detected_map = self.high_quality_resize(detected_map, (w, h))
|
88 |
+
detected_map = safe_numpy(detected_map)
|
89 |
+
return detected_map
|
90 |
+
|
91 |
+
def execute_outer_fit(self, detected_map, w, h):
|
92 |
+
old_h, old_w, _ = detected_map.shape
|
93 |
+
old_w = float(old_w)
|
94 |
+
old_h = float(old_h)
|
95 |
+
k0 = float(h) / old_h
|
96 |
+
k1 = float(w) / old_w
|
97 |
+
safeint = lambda x: int(np.round(x))
|
98 |
+
k = min(k0, k1)
|
99 |
+
|
100 |
+
borders = np.concatenate([detected_map[0, :, :], detected_map[-1, :, :], detected_map[:, 0, :], detected_map[:, -1, :]], axis=0)
|
101 |
+
high_quality_border_color = np.median(borders, axis=0).astype(detected_map.dtype)
|
102 |
+
if len(high_quality_border_color) == 4:
|
103 |
+
# Inpaint hijack
|
104 |
+
high_quality_border_color[3] = 255
|
105 |
+
high_quality_background = np.tile(high_quality_border_color[None, None], [h, w, 1])
|
106 |
+
detected_map = self.high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
|
107 |
+
new_h, new_w, _ = detected_map.shape
|
108 |
+
pad_h = max(0, (h - new_h) // 2)
|
109 |
+
pad_w = max(0, (w - new_w) // 2)
|
110 |
+
high_quality_background[pad_h:pad_h + new_h, pad_w:pad_w + new_w] = detected_map
|
111 |
+
detected_map = high_quality_background
|
112 |
+
detected_map = safe_numpy(detected_map)
|
113 |
+
return detected_map
|
114 |
+
|
115 |
+
def execute_inner_fit(self, detected_map, w, h):
|
116 |
+
old_h, old_w, _ = detected_map.shape
|
117 |
+
old_w = float(old_w)
|
118 |
+
old_h = float(old_h)
|
119 |
+
k0 = float(h) / old_h
|
120 |
+
k1 = float(w) / old_w
|
121 |
+
safeint = lambda x: int(np.round(x))
|
122 |
+
k = max(k0, k1)
|
123 |
+
|
124 |
+
detected_map = self.high_quality_resize(detected_map, (safeint(old_w * k), safeint(old_h * k)))
|
125 |
+
new_h, new_w, _ = detected_map.shape
|
126 |
+
pad_h = max(0, (new_h - h) // 2)
|
127 |
+
pad_w = max(0, (new_w - w) // 2)
|
128 |
+
detected_map = detected_map[pad_h:pad_h+h, pad_w:pad_w+w]
|
129 |
+
detected_map = safe_numpy(detected_map)
|
130 |
+
return detected_map
|
131 |
+
|
132 |
+
def high_quality_resize(self, x, size):
|
133 |
+
# Written by lvmin
|
134 |
+
# Super high-quality control map up-scaling, considering binary, seg, and one-pixel edges
|
135 |
+
|
136 |
+
inpaint_mask = None
|
137 |
+
if x.ndim == 3 and x.shape[2] == 4:
|
138 |
+
inpaint_mask = x[:, :, 3]
|
139 |
+
x = x[:, :, 0:3]
|
140 |
+
|
141 |
+
if x.shape[0] != size[1] or x.shape[1] != size[0]:
|
142 |
+
new_size_is_smaller = (size[0] * size[1]) < (x.shape[0] * x.shape[1])
|
143 |
+
new_size_is_bigger = (size[0] * size[1]) > (x.shape[0] * x.shape[1])
|
144 |
+
unique_color_count = len(get_unique_axis0(x.reshape(-1, x.shape[2])))
|
145 |
+
is_one_pixel_edge = False
|
146 |
+
is_binary = False
|
147 |
+
if unique_color_count == 2:
|
148 |
+
is_binary = np.min(x) < 16 and np.max(x) > 240
|
149 |
+
if is_binary:
|
150 |
+
xc = x
|
151 |
+
xc = cv2.erode(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
152 |
+
xc = cv2.dilate(xc, np.ones(shape=(3, 3), dtype=np.uint8), iterations=1)
|
153 |
+
one_pixel_edge_count = np.where(xc < x)[0].shape[0]
|
154 |
+
all_edge_count = np.where(x > 127)[0].shape[0]
|
155 |
+
is_one_pixel_edge = one_pixel_edge_count * 2 > all_edge_count
|
156 |
+
|
157 |
+
if 2 < unique_color_count < 200:
|
158 |
+
interpolation = cv2.INTER_NEAREST
|
159 |
+
elif new_size_is_smaller:
|
160 |
+
interpolation = cv2.INTER_AREA
|
161 |
+
else:
|
162 |
+
interpolation = cv2.INTER_CUBIC # Must be CUBIC because we now use nms. NEVER CHANGE THIS
|
163 |
+
|
164 |
+
y = cv2.resize(x, size, interpolation=interpolation)
|
165 |
+
if inpaint_mask is not None:
|
166 |
+
inpaint_mask = cv2.resize(inpaint_mask, size, interpolation=interpolation)
|
167 |
+
|
168 |
+
if is_binary:
|
169 |
+
y = np.mean(y.astype(np.float32), axis=2).clip(0, 255).astype(np.uint8)
|
170 |
+
if is_one_pixel_edge:
|
171 |
+
y = nake_nms(y)
|
172 |
+
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
173 |
+
y = lvmin_thin(y, prunings=new_size_is_bigger)
|
174 |
+
else:
|
175 |
+
_, y = cv2.threshold(y, 0, 255, cv2.THRESH_BINARY + cv2.THRESH_OTSU)
|
176 |
+
y = np.stack([y] * 3, axis=2)
|
177 |
+
else:
|
178 |
+
y = x
|
179 |
+
|
180 |
+
if inpaint_mask is not None:
|
181 |
+
inpaint_mask = (inpaint_mask > 127).astype(np.float32) * 255.0
|
182 |
+
inpaint_mask = inpaint_mask[:, :, None].clip(0, 255).astype(np.uint8)
|
183 |
+
y = np.concatenate([y, inpaint_mask], axis=2)
|
184 |
+
|
185 |
+
return y
|
186 |
+
|
187 |
+
|
188 |
+
class ImageGenResolutionFromLatent:
|
189 |
+
@classmethod
|
190 |
+
def INPUT_TYPES(s):
|
191 |
+
return {
|
192 |
+
"required": { "latent": ("LATENT", ) }
|
193 |
+
}
|
194 |
+
|
195 |
+
RETURN_TYPES = ("INT", "INT")
|
196 |
+
RETURN_NAMES = ("IMAGE_GEN_WIDTH (INT)", "IMAGE_GEN_HEIGHT (INT)")
|
197 |
+
FUNCTION = "execute"
|
198 |
+
|
199 |
+
CATEGORY = "ControlNet Preprocessors"
|
200 |
+
|
201 |
+
def execute(self, latent):
|
202 |
+
_, _, H, W = latent["samples"].shape
|
203 |
+
return (W * 8, H * 8)
|
204 |
+
|
205 |
+
class ImageGenResolutionFromImage:
|
206 |
+
@classmethod
|
207 |
+
def INPUT_TYPES(s):
|
208 |
+
return {
|
209 |
+
"required": { "image": ("IMAGE", ) }
|
210 |
+
}
|
211 |
+
|
212 |
+
RETURN_TYPES = ("INT", "INT")
|
213 |
+
RETURN_NAMES = ("IMAGE_GEN_WIDTH (INT)", "IMAGE_GEN_HEIGHT (INT)")
|
214 |
+
FUNCTION = "execute"
|
215 |
+
|
216 |
+
CATEGORY = "ControlNet Preprocessors"
|
217 |
+
|
218 |
+
def execute(self, image):
|
219 |
+
_, H, W, _ = image.shape
|
220 |
+
return (W, H)
|
221 |
+
|
222 |
+
NODE_CLASS_MAPPINGS = {
|
223 |
+
"PixelPerfectResolution": PixelPerfectResolution,
|
224 |
+
"ImageGenResolutionFromImage": ImageGenResolutionFromImage,
|
225 |
+
"ImageGenResolutionFromLatent": ImageGenResolutionFromLatent,
|
226 |
+
"HintImageEnchance": HintImageEnchance
|
227 |
+
}
|
228 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
229 |
+
"PixelPerfectResolution": "Pixel Perfect Resolution",
|
230 |
+
"ImageGenResolutionFromImage": "Generation Resolution From Image",
|
231 |
+
"ImageGenResolutionFromLatent": "Generation Resolution From Latent",
|
232 |
+
"HintImageEnchance": "Enchance And Resize Hint Images"
|
233 |
+
}
|
custom_nodes/comfyui_controlnet_aux/install.bat
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
@echo off
|
2 |
+
|
3 |
+
set "requirements_txt=%~dp0\requirements.txt"
|
4 |
+
set "python_exec=..\..\..\python_embeded\python.exe"
|
5 |
+
|
6 |
+
echo Installing ComfyUI's ControlNet Auxiliary Preprocessors..
|
7 |
+
|
8 |
+
if exist "%python_exec%" (
|
9 |
+
echo Installing with ComfyUI Portable
|
10 |
+
for /f "delims=" %%i in (%requirements_txt%) do (
|
11 |
+
%python_exec% -s -m pip install "%%i"
|
12 |
+
)
|
13 |
+
) else (
|
14 |
+
echo Installing with system Python
|
15 |
+
for /f "delims=" %%i in (%requirements_txt%) do (
|
16 |
+
pip install "%%i"
|
17 |
+
)
|
18 |
+
)
|
19 |
+
|
20 |
+
pause
|
custom_nodes/comfyui_controlnet_aux/log.py
ADDED
@@ -0,0 +1,80 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#Cre: https://github.com/melMass/comfy_mtb/blob/main/log.py
|
2 |
+
import logging
|
3 |
+
import re
|
4 |
+
import os
|
5 |
+
|
6 |
+
base_log_level = logging.INFO
|
7 |
+
|
8 |
+
|
9 |
+
# Custom object that discards the output
|
10 |
+
class NullWriter:
|
11 |
+
def write(self, text):
|
12 |
+
pass
|
13 |
+
|
14 |
+
|
15 |
+
class Formatter(logging.Formatter):
|
16 |
+
grey = "\x1b[38;20m"
|
17 |
+
cyan = "\x1b[36;20m"
|
18 |
+
purple = "\x1b[35;20m"
|
19 |
+
yellow = "\x1b[33;20m"
|
20 |
+
red = "\x1b[31;20m"
|
21 |
+
bold_red = "\x1b[31;1m"
|
22 |
+
reset = "\x1b[0m"
|
23 |
+
# format = "%(asctime)s - [%(name)s] - %(levelname)s - %(message)s (%(filename)s:%(lineno)d)"
|
24 |
+
format = "[%(name)s] | %(levelname)s -> %(message)s"
|
25 |
+
|
26 |
+
FORMATS = {
|
27 |
+
logging.DEBUG: purple + format + reset,
|
28 |
+
logging.INFO: cyan + format + reset,
|
29 |
+
logging.WARNING: yellow + format + reset,
|
30 |
+
logging.ERROR: red + format + reset,
|
31 |
+
logging.CRITICAL: bold_red + format + reset,
|
32 |
+
}
|
33 |
+
|
34 |
+
def format(self, record):
|
35 |
+
log_fmt = self.FORMATS.get(record.levelno)
|
36 |
+
formatter = logging.Formatter(log_fmt)
|
37 |
+
return formatter.format(record)
|
38 |
+
|
39 |
+
|
40 |
+
def mklog(name, level=base_log_level):
|
41 |
+
logger = logging.getLogger(name)
|
42 |
+
logger.setLevel(level)
|
43 |
+
|
44 |
+
for handler in logger.handlers:
|
45 |
+
logger.removeHandler(handler)
|
46 |
+
|
47 |
+
ch = logging.StreamHandler()
|
48 |
+
ch.setLevel(level)
|
49 |
+
ch.setFormatter(Formatter())
|
50 |
+
logger.addHandler(ch)
|
51 |
+
|
52 |
+
# Disable log propagation
|
53 |
+
logger.propagate = False
|
54 |
+
|
55 |
+
return logger
|
56 |
+
|
57 |
+
|
58 |
+
# - The main app logger
|
59 |
+
log = mklog(__package__, base_log_level)
|
60 |
+
|
61 |
+
|
62 |
+
def log_user(arg):
|
63 |
+
print("\033[34mComfyUI ControlNet AUX:\033[0m {arg}")
|
64 |
+
|
65 |
+
|
66 |
+
def get_summary(docstring):
|
67 |
+
return docstring.strip().split("\n\n", 1)[0]
|
68 |
+
|
69 |
+
|
70 |
+
def blue_text(text):
|
71 |
+
return f"\033[94m{text}\033[0m"
|
72 |
+
|
73 |
+
|
74 |
+
def cyan_text(text):
|
75 |
+
return f"\033[96m{text}\033[0m"
|
76 |
+
|
77 |
+
|
78 |
+
def get_label(label):
|
79 |
+
words = re.findall(r"(?:^|[A-Z])[a-z]*", label)
|
80 |
+
return " ".join(words).strip()
|
custom_nodes/comfyui_controlnet_aux/lvminthin.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# High Quality Edge Thinning using Pure Python
|
2 |
+
# Written by Lvmin Zhang
|
3 |
+
# 2023 April
|
4 |
+
# Stanford University
|
5 |
+
# If you use this, please Cite "High Quality Edge Thinning using Pure Python", Lvmin Zhang, In Mikubill/sd-webui-controlnet.
|
6 |
+
|
7 |
+
|
8 |
+
import cv2
|
9 |
+
import numpy as np
|
10 |
+
|
11 |
+
|
12 |
+
lvmin_kernels_raw = [
|
13 |
+
np.array([
|
14 |
+
[-1, -1, -1],
|
15 |
+
[0, 1, 0],
|
16 |
+
[1, 1, 1]
|
17 |
+
], dtype=np.int32),
|
18 |
+
np.array([
|
19 |
+
[0, -1, -1],
|
20 |
+
[1, 1, -1],
|
21 |
+
[0, 1, 0]
|
22 |
+
], dtype=np.int32)
|
23 |
+
]
|
24 |
+
|
25 |
+
lvmin_kernels = []
|
26 |
+
lvmin_kernels += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_kernels_raw]
|
27 |
+
lvmin_kernels += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_kernels_raw]
|
28 |
+
lvmin_kernels += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_kernels_raw]
|
29 |
+
lvmin_kernels += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_kernels_raw]
|
30 |
+
|
31 |
+
lvmin_prunings_raw = [
|
32 |
+
np.array([
|
33 |
+
[-1, -1, -1],
|
34 |
+
[-1, 1, -1],
|
35 |
+
[0, 0, -1]
|
36 |
+
], dtype=np.int32),
|
37 |
+
np.array([
|
38 |
+
[-1, -1, -1],
|
39 |
+
[-1, 1, -1],
|
40 |
+
[-1, 0, 0]
|
41 |
+
], dtype=np.int32)
|
42 |
+
]
|
43 |
+
|
44 |
+
lvmin_prunings = []
|
45 |
+
lvmin_prunings += [np.rot90(x, k=0, axes=(0, 1)) for x in lvmin_prunings_raw]
|
46 |
+
lvmin_prunings += [np.rot90(x, k=1, axes=(0, 1)) for x in lvmin_prunings_raw]
|
47 |
+
lvmin_prunings += [np.rot90(x, k=2, axes=(0, 1)) for x in lvmin_prunings_raw]
|
48 |
+
lvmin_prunings += [np.rot90(x, k=3, axes=(0, 1)) for x in lvmin_prunings_raw]
|
49 |
+
|
50 |
+
|
51 |
+
def remove_pattern(x, kernel):
|
52 |
+
objects = cv2.morphologyEx(x, cv2.MORPH_HITMISS, kernel)
|
53 |
+
objects = np.where(objects > 127)
|
54 |
+
x[objects] = 0
|
55 |
+
return x, objects[0].shape[0] > 0
|
56 |
+
|
57 |
+
|
58 |
+
def thin_one_time(x, kernels):
|
59 |
+
y = x
|
60 |
+
is_done = True
|
61 |
+
for k in kernels:
|
62 |
+
y, has_update = remove_pattern(y, k)
|
63 |
+
if has_update:
|
64 |
+
is_done = False
|
65 |
+
return y, is_done
|
66 |
+
|
67 |
+
|
68 |
+
def lvmin_thin(x, prunings=True):
|
69 |
+
y = x
|
70 |
+
for i in range(32):
|
71 |
+
y, is_done = thin_one_time(y, lvmin_kernels)
|
72 |
+
if is_done:
|
73 |
+
break
|
74 |
+
if prunings:
|
75 |
+
y, _ = thin_one_time(y, lvmin_prunings)
|
76 |
+
return y
|
77 |
+
|
78 |
+
|
79 |
+
def nake_nms(x):
|
80 |
+
f1 = np.array([[0, 0, 0], [1, 1, 1], [0, 0, 0]], dtype=np.uint8)
|
81 |
+
f2 = np.array([[0, 1, 0], [0, 1, 0], [0, 1, 0]], dtype=np.uint8)
|
82 |
+
f3 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1]], dtype=np.uint8)
|
83 |
+
f4 = np.array([[0, 0, 1], [0, 1, 0], [1, 0, 0]], dtype=np.uint8)
|
84 |
+
y = np.zeros_like(x)
|
85 |
+
for f in [f1, f2, f3, f4]:
|
86 |
+
np.putmask(y, cv2.dilate(x, kernel=f) == x, x)
|
87 |
+
return y
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/anime_face_segment.py
ADDED
@@ -0,0 +1,43 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import torch
|
4 |
+
from einops import rearrange
|
5 |
+
|
6 |
+
class AnimeFace_SemSegPreprocessor:
|
7 |
+
@classmethod
|
8 |
+
def INPUT_TYPES(s):
|
9 |
+
#This preprocessor is only trained on 512x resolution
|
10 |
+
#https://github.com/siyeong0/Anime-Face-Segmentation/blob/main/predict.py#L25
|
11 |
+
return define_preprocessor_inputs(
|
12 |
+
remove_background_using_abg=INPUT.BOOLEAN(True),
|
13 |
+
resolution=INPUT.RESOLUTION(default=512, min=512, max=512)
|
14 |
+
)
|
15 |
+
|
16 |
+
RETURN_TYPES = ("IMAGE", "MASK")
|
17 |
+
RETURN_NAMES = ("IMAGE", "ABG_CHARACTER_MASK (MASK)")
|
18 |
+
FUNCTION = "execute"
|
19 |
+
|
20 |
+
CATEGORY = "ControlNet Preprocessors/Semantic Segmentation"
|
21 |
+
|
22 |
+
def execute(self, image, remove_background_using_abg=True, resolution=512, **kwargs):
|
23 |
+
from custom_controlnet_aux.anime_face_segment import AnimeFaceSegmentor
|
24 |
+
|
25 |
+
model = AnimeFaceSegmentor.from_pretrained().to(model_management.get_torch_device())
|
26 |
+
if remove_background_using_abg:
|
27 |
+
out_image_with_mask = common_annotator_call(model, image, resolution=resolution, remove_background=True)
|
28 |
+
out_image = out_image_with_mask[..., :3]
|
29 |
+
mask = out_image_with_mask[..., 3:]
|
30 |
+
mask = rearrange(mask, "n h w c -> n c h w")
|
31 |
+
else:
|
32 |
+
out_image = common_annotator_call(model, image, resolution=resolution, remove_background=False)
|
33 |
+
N, H, W, C = out_image.shape
|
34 |
+
mask = torch.ones(N, C, H, W)
|
35 |
+
del model
|
36 |
+
return (out_image, mask)
|
37 |
+
|
38 |
+
NODE_CLASS_MAPPINGS = {
|
39 |
+
"AnimeFace_SemSegPreprocessor": AnimeFace_SemSegPreprocessor
|
40 |
+
}
|
41 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
42 |
+
"AnimeFace_SemSegPreprocessor": "Anime Face Segmentor"
|
43 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/anyline.py
ADDED
@@ -0,0 +1,87 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import numpy as np
|
3 |
+
import comfy.model_management as model_management
|
4 |
+
import comfy.utils
|
5 |
+
|
6 |
+
# Requires comfyui_controlnet_aux funcsions and classes
|
7 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
8 |
+
|
9 |
+
def get_intensity_mask(image_array, lower_bound, upper_bound):
|
10 |
+
mask = image_array[:, :, 0]
|
11 |
+
mask = np.where((mask >= lower_bound) & (mask <= upper_bound), mask, 0)
|
12 |
+
mask = np.expand_dims(mask, 2).repeat(3, axis=2)
|
13 |
+
return mask
|
14 |
+
|
15 |
+
def combine_layers(base_layer, top_layer):
|
16 |
+
mask = top_layer.astype(bool)
|
17 |
+
temp = 1 - (1 - top_layer) * (1 - base_layer)
|
18 |
+
result = base_layer * (~mask) + temp * mask
|
19 |
+
return result
|
20 |
+
|
21 |
+
class AnyLinePreprocessor:
|
22 |
+
@classmethod
|
23 |
+
def INPUT_TYPES(s):
|
24 |
+
return define_preprocessor_inputs(
|
25 |
+
merge_with_lineart=INPUT.COMBO(["lineart_standard", "lineart_realisitic", "lineart_anime", "manga_line"], default="lineart_standard"),
|
26 |
+
resolution=INPUT.RESOLUTION(default=1280, step=8),
|
27 |
+
lineart_lower_bound=INPUT.FLOAT(default=0),
|
28 |
+
lineart_upper_bound=INPUT.FLOAT(default=1),
|
29 |
+
object_min_size=INPUT.INT(default=36, min=1),
|
30 |
+
object_connectivity=INPUT.INT(default=1, min=1)
|
31 |
+
)
|
32 |
+
|
33 |
+
RETURN_TYPES = ("IMAGE",)
|
34 |
+
RETURN_NAMES = ("image",)
|
35 |
+
|
36 |
+
FUNCTION = "get_anyline"
|
37 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
38 |
+
|
39 |
+
def __init__(self):
|
40 |
+
self.device = model_management.get_torch_device()
|
41 |
+
|
42 |
+
def get_anyline(self, image, merge_with_lineart="lineart_standard", resolution=512, lineart_lower_bound=0, lineart_upper_bound=1, object_min_size=36, object_connectivity=1):
|
43 |
+
from custom_controlnet_aux.teed import TEDDetector
|
44 |
+
from skimage import morphology
|
45 |
+
pbar = comfy.utils.ProgressBar(3)
|
46 |
+
|
47 |
+
# Process the image with MTEED model
|
48 |
+
mteed_model = TEDDetector.from_pretrained("TheMistoAI/MistoLine", "MTEED.pth", subfolder="Anyline").to(self.device)
|
49 |
+
mteed_result = common_annotator_call(mteed_model, image, resolution=resolution, show_pbar=False)
|
50 |
+
mteed_result = mteed_result.numpy()
|
51 |
+
del mteed_model
|
52 |
+
pbar.update(1)
|
53 |
+
|
54 |
+
# Process the image with the lineart standard preprocessor
|
55 |
+
if merge_with_lineart == "lineart_standard":
|
56 |
+
from custom_controlnet_aux.lineart_standard import LineartStandardDetector
|
57 |
+
lineart_standard_detector = LineartStandardDetector()
|
58 |
+
lineart_result = common_annotator_call(lineart_standard_detector, image, guassian_sigma=2, intensity_threshold=3, resolution=resolution, show_pbar=False).numpy()
|
59 |
+
del lineart_standard_detector
|
60 |
+
else:
|
61 |
+
from custom_controlnet_aux.lineart import LineartDetector
|
62 |
+
from custom_controlnet_aux.lineart_anime import LineartAnimeDetector
|
63 |
+
from custom_controlnet_aux.manga_line import LineartMangaDetector
|
64 |
+
lineart_detector = dict(lineart_realisitic=LineartDetector, lineart_anime=LineartAnimeDetector, manga_line=LineartMangaDetector)[merge_with_lineart]
|
65 |
+
lineart_detector = lineart_detector.from_pretrained().to(self.device)
|
66 |
+
lineart_result = common_annotator_call(lineart_detector, image, resolution=resolution, show_pbar=False).numpy()
|
67 |
+
del lineart_detector
|
68 |
+
pbar.update(1)
|
69 |
+
|
70 |
+
final_result = []
|
71 |
+
for i in range(len(image)):
|
72 |
+
_lineart_result = get_intensity_mask(lineart_result[i], lower_bound=lineart_lower_bound, upper_bound=lineart_upper_bound)
|
73 |
+
_cleaned = morphology.remove_small_objects(_lineart_result.astype(bool), min_size=object_min_size, connectivity=object_connectivity)
|
74 |
+
_lineart_result = _lineart_result * _cleaned
|
75 |
+
_mteed_result = mteed_result[i]
|
76 |
+
|
77 |
+
# Combine the results
|
78 |
+
final_result.append(torch.from_numpy(combine_layers(_mteed_result, _lineart_result)))
|
79 |
+
pbar.update(1)
|
80 |
+
return (torch.stack(final_result),)
|
81 |
+
|
82 |
+
NODE_CLASS_MAPPINGS = {
|
83 |
+
"AnyLineArtPreprocessor_aux": AnyLinePreprocessor
|
84 |
+
}
|
85 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
86 |
+
"AnyLineArtPreprocessor_aux": "AnyLine Lineart"
|
87 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/binary.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Binary_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
bin_threshold=INPUT.INT(default=100, max=255),
|
9 |
+
resolution=INPUT.RESOLUTION()
|
10 |
+
)
|
11 |
+
|
12 |
+
RETURN_TYPES = ("IMAGE",)
|
13 |
+
FUNCTION = "execute"
|
14 |
+
|
15 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
16 |
+
|
17 |
+
def execute(self, image, bin_threshold=100, resolution=512, **kwargs):
|
18 |
+
from custom_controlnet_aux.binary import BinaryDetector
|
19 |
+
|
20 |
+
return (common_annotator_call(BinaryDetector(), image, bin_threshold=bin_threshold, resolution=resolution), )
|
21 |
+
|
22 |
+
|
23 |
+
|
24 |
+
NODE_CLASS_MAPPINGS = {
|
25 |
+
"BinaryPreprocessor": Binary_Preprocessor
|
26 |
+
}
|
27 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
28 |
+
"BinaryPreprocessor": "Binary Lines"
|
29 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/canny.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Canny_Edge_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
low_threshold=INPUT.INT(default=100, max=255),
|
9 |
+
high_threshold=INPUT.INT(default=200, max=255),
|
10 |
+
resolution=INPUT.RESOLUTION()
|
11 |
+
)
|
12 |
+
|
13 |
+
RETURN_TYPES = ("IMAGE",)
|
14 |
+
FUNCTION = "execute"
|
15 |
+
|
16 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
17 |
+
|
18 |
+
def execute(self, image, low_threshold=100, high_threshold=200, resolution=512, **kwargs):
|
19 |
+
from custom_controlnet_aux.canny import CannyDetector
|
20 |
+
|
21 |
+
return (common_annotator_call(CannyDetector(), image, low_threshold=low_threshold, high_threshold=high_threshold, resolution=resolution), )
|
22 |
+
|
23 |
+
|
24 |
+
|
25 |
+
NODE_CLASS_MAPPINGS = {
|
26 |
+
"CannyEdgePreprocessor": Canny_Edge_Preprocessor
|
27 |
+
}
|
28 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
29 |
+
"CannyEdgePreprocessor": "Canny Edge"
|
30 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/color.py
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Color_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
8 |
+
|
9 |
+
RETURN_TYPES = ("IMAGE",)
|
10 |
+
FUNCTION = "execute"
|
11 |
+
|
12 |
+
CATEGORY = "ControlNet Preprocessors/T2IAdapter-only"
|
13 |
+
|
14 |
+
def execute(self, image, resolution=512, **kwargs):
|
15 |
+
from custom_controlnet_aux.color import ColorDetector
|
16 |
+
|
17 |
+
return (common_annotator_call(ColorDetector(), image, resolution=resolution), )
|
18 |
+
|
19 |
+
|
20 |
+
|
21 |
+
NODE_CLASS_MAPPINGS = {
|
22 |
+
"ColorPreprocessor": Color_Preprocessor
|
23 |
+
}
|
24 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
25 |
+
"ColorPreprocessor": "Color Pallete"
|
26 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/densepose.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class DensePose_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
model=INPUT.COMBO(["densepose_r50_fpn_dl.torchscript", "densepose_r101_fpn_dl.torchscript"]),
|
9 |
+
cmap=INPUT.COMBO(["Viridis (MagicAnimate)", "Parula (CivitAI)"]),
|
10 |
+
resolution=INPUT.RESOLUTION()
|
11 |
+
)
|
12 |
+
|
13 |
+
RETURN_TYPES = ("IMAGE",)
|
14 |
+
FUNCTION = "execute"
|
15 |
+
|
16 |
+
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
|
17 |
+
|
18 |
+
def execute(self, image, model="densepose_r50_fpn_dl.torchscript", cmap="Viridis (MagicAnimate)", resolution=512):
|
19 |
+
from custom_controlnet_aux.densepose import DenseposeDetector
|
20 |
+
model = DenseposeDetector \
|
21 |
+
.from_pretrained(filename=model) \
|
22 |
+
.to(model_management.get_torch_device())
|
23 |
+
return (common_annotator_call(model, image, cmap="viridis" if "Viridis" in cmap else "parula", resolution=resolution), )
|
24 |
+
|
25 |
+
|
26 |
+
NODE_CLASS_MAPPINGS = {
|
27 |
+
"DensePosePreprocessor": DensePose_Preprocessor
|
28 |
+
}
|
29 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
30 |
+
"DensePosePreprocessor": "DensePose Estimator"
|
31 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/depth_anything.py
ADDED
@@ -0,0 +1,55 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Depth_Anything_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
ckpt_name=INPUT.COMBO(
|
9 |
+
["depth_anything_vitl14.pth", "depth_anything_vitb14.pth", "depth_anything_vits14.pth"]
|
10 |
+
),
|
11 |
+
resolution=INPUT.RESOLUTION()
|
12 |
+
)
|
13 |
+
|
14 |
+
RETURN_TYPES = ("IMAGE",)
|
15 |
+
FUNCTION = "execute"
|
16 |
+
|
17 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
18 |
+
|
19 |
+
def execute(self, image, ckpt_name="depth_anything_vitl14.pth", resolution=512, **kwargs):
|
20 |
+
from custom_controlnet_aux.depth_anything import DepthAnythingDetector
|
21 |
+
|
22 |
+
model = DepthAnythingDetector.from_pretrained(filename=ckpt_name).to(model_management.get_torch_device())
|
23 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
24 |
+
del model
|
25 |
+
return (out, )
|
26 |
+
|
27 |
+
class Zoe_Depth_Anything_Preprocessor:
|
28 |
+
@classmethod
|
29 |
+
def INPUT_TYPES(s):
|
30 |
+
return define_preprocessor_inputs(
|
31 |
+
environment=INPUT.COMBO(["indoor", "outdoor"]),
|
32 |
+
resolution=INPUT.RESOLUTION()
|
33 |
+
)
|
34 |
+
|
35 |
+
RETURN_TYPES = ("IMAGE",)
|
36 |
+
FUNCTION = "execute"
|
37 |
+
|
38 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
39 |
+
|
40 |
+
def execute(self, image, environment="indoor", resolution=512, **kwargs):
|
41 |
+
from custom_controlnet_aux.zoe import ZoeDepthAnythingDetector
|
42 |
+
ckpt_name = "depth_anything_metric_depth_indoor.pt" if environment == "indoor" else "depth_anything_metric_depth_outdoor.pt"
|
43 |
+
model = ZoeDepthAnythingDetector.from_pretrained(filename=ckpt_name).to(model_management.get_torch_device())
|
44 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
45 |
+
del model
|
46 |
+
return (out, )
|
47 |
+
|
48 |
+
NODE_CLASS_MAPPINGS = {
|
49 |
+
"DepthAnythingPreprocessor": Depth_Anything_Preprocessor,
|
50 |
+
"Zoe_DepthAnythingPreprocessor": Zoe_Depth_Anything_Preprocessor
|
51 |
+
}
|
52 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
53 |
+
"DepthAnythingPreprocessor": "Depth Anything",
|
54 |
+
"Zoe_DepthAnythingPreprocessor": "Zoe Depth Anything"
|
55 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/depth_anything_v2.py
ADDED
@@ -0,0 +1,56 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, INPUT, define_preprocessor_inputs
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class Depth_Anything_V2_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
ckpt_name=INPUT.COMBO(
|
9 |
+
["depth_anything_v2_vitg.pth", "depth_anything_v2_vitl.pth", "depth_anything_v2_vitb.pth", "depth_anything_v2_vits.pth"],
|
10 |
+
default="depth_anything_v2_vitl.pth"
|
11 |
+
),
|
12 |
+
resolution=INPUT.RESOLUTION()
|
13 |
+
)
|
14 |
+
|
15 |
+
RETURN_TYPES = ("IMAGE",)
|
16 |
+
FUNCTION = "execute"
|
17 |
+
|
18 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
19 |
+
|
20 |
+
def execute(self, image, ckpt_name="depth_anything_v2_vitl.pth", resolution=512, **kwargs):
|
21 |
+
from custom_controlnet_aux.depth_anything_v2 import DepthAnythingV2Detector
|
22 |
+
|
23 |
+
model = DepthAnythingV2Detector.from_pretrained(filename=ckpt_name).to(model_management.get_torch_device())
|
24 |
+
out = common_annotator_call(model, image, resolution=resolution, max_depth=1)
|
25 |
+
del model
|
26 |
+
return (out, )
|
27 |
+
|
28 |
+
""" class Depth_Anything_Metric_V2_Preprocessor:
|
29 |
+
@classmethod
|
30 |
+
def INPUT_TYPES(s):
|
31 |
+
return create_node_input_types(
|
32 |
+
environment=(["indoor", "outdoor"], {"default": "indoor"}),
|
33 |
+
max_depth=("FLOAT", {"min": 0, "max": 100, "default": 20.0, "step": 0.01})
|
34 |
+
)
|
35 |
+
|
36 |
+
RETURN_TYPES = ("IMAGE",)
|
37 |
+
FUNCTION = "execute"
|
38 |
+
|
39 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
40 |
+
|
41 |
+
def execute(self, image, environment, resolution=512, max_depth=20.0, **kwargs):
|
42 |
+
from custom_controlnet_aux.depth_anything_v2 import DepthAnythingV2Detector
|
43 |
+
filename = dict(indoor="depth_anything_v2_metric_hypersim_vitl.pth", outdoor="depth_anything_v2_metric_vkitti_vitl.pth")[environment]
|
44 |
+
model = DepthAnythingV2Detector.from_pretrained(filename=filename).to(model_management.get_torch_device())
|
45 |
+
out = common_annotator_call(model, image, resolution=resolution, max_depth=max_depth)
|
46 |
+
del model
|
47 |
+
return (out, ) """
|
48 |
+
|
49 |
+
NODE_CLASS_MAPPINGS = {
|
50 |
+
"DepthAnythingV2Preprocessor": Depth_Anything_V2_Preprocessor,
|
51 |
+
#"Metric_DepthAnythingV2Preprocessor": Depth_Anything_Metric_V2_Preprocessor
|
52 |
+
}
|
53 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
54 |
+
"DepthAnythingV2Preprocessor": "Depth Anything V2 - Relative",
|
55 |
+
#"Metric_DepthAnythingV2Preprocessor": "Depth Anything V2 - Metric"
|
56 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/diffusion_edge.py
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT, run_script
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import sys
|
4 |
+
|
5 |
+
def install_deps():
|
6 |
+
try:
|
7 |
+
import sklearn
|
8 |
+
except:
|
9 |
+
run_script([sys.executable, '-s', '-m', 'pip', 'install', 'scikit-learn'])
|
10 |
+
|
11 |
+
class DiffusionEdge_Preprocessor:
|
12 |
+
@classmethod
|
13 |
+
def INPUT_TYPES(s):
|
14 |
+
return define_preprocessor_inputs(
|
15 |
+
environment=INPUT.COMBO(["indoor", "urban", "natrual"]),
|
16 |
+
patch_batch_size=INPUT.INT(default=4, min=1, max=16),
|
17 |
+
resolution=INPUT.RESOLUTION()
|
18 |
+
)
|
19 |
+
|
20 |
+
RETURN_TYPES = ("IMAGE",)
|
21 |
+
FUNCTION = "execute"
|
22 |
+
|
23 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
24 |
+
|
25 |
+
def execute(self, image, environment="indoor", patch_batch_size=4, resolution=512, **kwargs):
|
26 |
+
install_deps()
|
27 |
+
from custom_controlnet_aux.diffusion_edge import DiffusionEdgeDetector
|
28 |
+
|
29 |
+
model = DiffusionEdgeDetector \
|
30 |
+
.from_pretrained(filename = f"diffusion_edge_{environment}.pt") \
|
31 |
+
.to(model_management.get_torch_device())
|
32 |
+
out = common_annotator_call(model, image, resolution=resolution, patch_batch_size=patch_batch_size)
|
33 |
+
del model
|
34 |
+
return (out, )
|
35 |
+
|
36 |
+
NODE_CLASS_MAPPINGS = {
|
37 |
+
"DiffusionEdge_Preprocessor": DiffusionEdge_Preprocessor,
|
38 |
+
}
|
39 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
40 |
+
"DiffusionEdge_Preprocessor": "Diffusion Edge (batch size ↑ => speed ↑, VRAM ↑)",
|
41 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/dsine.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class DSINE_Normal_Map_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
fov=INPUT.FLOAT(max=365.0, default=60.0),
|
9 |
+
iterations=INPUT.INT(min=1, max=20, default=5),
|
10 |
+
resolution=INPUT.RESOLUTION()
|
11 |
+
)
|
12 |
+
|
13 |
+
RETURN_TYPES = ("IMAGE",)
|
14 |
+
FUNCTION = "execute"
|
15 |
+
|
16 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
17 |
+
|
18 |
+
def execute(self, image, fov=60.0, iterations=5, resolution=512, **kwargs):
|
19 |
+
from custom_controlnet_aux.dsine import DsineDetector
|
20 |
+
|
21 |
+
model = DsineDetector.from_pretrained().to(model_management.get_torch_device())
|
22 |
+
out = common_annotator_call(model, image, fov=fov, iterations=iterations, resolution=resolution)
|
23 |
+
del model
|
24 |
+
return (out,)
|
25 |
+
|
26 |
+
NODE_CLASS_MAPPINGS = {
|
27 |
+
"DSINE-NormalMapPreprocessor": DSINE_Normal_Map_Preprocessor
|
28 |
+
}
|
29 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
30 |
+
"DSINE-NormalMapPreprocessor": "DSINE Normal Map"
|
31 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/dwpose.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
import numpy as np
|
4 |
+
import warnings
|
5 |
+
from custom_controlnet_aux.dwpose import DwposeDetector, AnimalposeDetector
|
6 |
+
import os
|
7 |
+
import json
|
8 |
+
|
9 |
+
DWPOSE_MODEL_NAME = "yzd-v/DWPose"
|
10 |
+
#Trigger startup caching for onnxruntime
|
11 |
+
GPU_PROVIDERS = ["CUDAExecutionProvider", "DirectMLExecutionProvider", "OpenVINOExecutionProvider", "ROCMExecutionProvider", "CoreMLExecutionProvider"]
|
12 |
+
def check_ort_gpu():
|
13 |
+
try:
|
14 |
+
import onnxruntime as ort
|
15 |
+
for provider in GPU_PROVIDERS:
|
16 |
+
if provider in ort.get_available_providers():
|
17 |
+
return True
|
18 |
+
return False
|
19 |
+
except:
|
20 |
+
return False
|
21 |
+
|
22 |
+
if not os.environ.get("DWPOSE_ONNXRT_CHECKED"):
|
23 |
+
if check_ort_gpu():
|
24 |
+
print("DWPose: Onnxruntime with acceleration providers detected")
|
25 |
+
else:
|
26 |
+
warnings.warn("DWPose: Onnxruntime not found or doesn't come with acceleration providers, switch to OpenCV with CPU device. DWPose might run very slowly")
|
27 |
+
os.environ['AUX_ORT_PROVIDERS'] = ''
|
28 |
+
os.environ["DWPOSE_ONNXRT_CHECKED"] = '1'
|
29 |
+
|
30 |
+
class DWPose_Preprocessor:
|
31 |
+
@classmethod
|
32 |
+
def INPUT_TYPES(s):
|
33 |
+
return define_preprocessor_inputs(
|
34 |
+
detect_hand=INPUT.COMBO(["enable", "disable"]),
|
35 |
+
detect_body=INPUT.COMBO(["enable", "disable"]),
|
36 |
+
detect_face=INPUT.COMBO(["enable", "disable"]),
|
37 |
+
resolution=INPUT.RESOLUTION(),
|
38 |
+
bbox_detector=INPUT.COMBO(
|
39 |
+
["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"],
|
40 |
+
default="yolox_l.onnx"
|
41 |
+
),
|
42 |
+
pose_estimator=INPUT.COMBO(
|
43 |
+
["dw-ll_ucoco_384_bs5.torchscript.pt", "dw-ll_ucoco_384.onnx", "dw-ll_ucoco.onnx"],
|
44 |
+
default="dw-ll_ucoco_384_bs5.torchscript.pt"
|
45 |
+
),
|
46 |
+
scale_stick_for_xinsr_cn=INPUT.COMBO(["disable", "enable"])
|
47 |
+
)
|
48 |
+
|
49 |
+
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT")
|
50 |
+
FUNCTION = "estimate_pose"
|
51 |
+
|
52 |
+
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
|
53 |
+
|
54 |
+
def estimate_pose(self, image, detect_hand="enable", detect_body="enable", detect_face="enable", resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="dw-ll_ucoco_384.onnx", scale_stick_for_xinsr_cn="disable", **kwargs):
|
55 |
+
if bbox_detector == "yolox_l.onnx":
|
56 |
+
yolo_repo = DWPOSE_MODEL_NAME
|
57 |
+
elif "yolox" in bbox_detector:
|
58 |
+
yolo_repo = "hr16/yolox-onnx"
|
59 |
+
elif "yolo_nas" in bbox_detector:
|
60 |
+
yolo_repo = "hr16/yolo-nas-fp16"
|
61 |
+
else:
|
62 |
+
raise NotImplementedError(f"Download mechanism for {bbox_detector}")
|
63 |
+
|
64 |
+
if pose_estimator == "dw-ll_ucoco_384.onnx":
|
65 |
+
pose_repo = DWPOSE_MODEL_NAME
|
66 |
+
elif pose_estimator.endswith(".onnx"):
|
67 |
+
pose_repo = "hr16/UnJIT-DWPose"
|
68 |
+
elif pose_estimator.endswith(".torchscript.pt"):
|
69 |
+
pose_repo = "hr16/DWPose-TorchScript-BatchSize5"
|
70 |
+
else:
|
71 |
+
raise NotImplementedError(f"Download mechanism for {pose_estimator}")
|
72 |
+
|
73 |
+
model = DwposeDetector.from_pretrained(
|
74 |
+
pose_repo,
|
75 |
+
yolo_repo,
|
76 |
+
det_filename=bbox_detector, pose_filename=pose_estimator,
|
77 |
+
torchscript_device=model_management.get_torch_device()
|
78 |
+
)
|
79 |
+
detect_hand = detect_hand == "enable"
|
80 |
+
detect_body = detect_body == "enable"
|
81 |
+
detect_face = detect_face == "enable"
|
82 |
+
scale_stick_for_xinsr_cn = scale_stick_for_xinsr_cn == "enable"
|
83 |
+
self.openpose_dicts = []
|
84 |
+
def func(image, **kwargs):
|
85 |
+
pose_img, openpose_dict = model(image, **kwargs)
|
86 |
+
self.openpose_dicts.append(openpose_dict)
|
87 |
+
return pose_img
|
88 |
+
|
89 |
+
out = common_annotator_call(func, image, include_hand=detect_hand, include_face=detect_face, include_body=detect_body, image_and_json=True, resolution=resolution, xinsr_stick_scaling=scale_stick_for_xinsr_cn)
|
90 |
+
del model
|
91 |
+
return {
|
92 |
+
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] },
|
93 |
+
"result": (out, self.openpose_dicts)
|
94 |
+
}
|
95 |
+
|
96 |
+
class AnimalPose_Preprocessor:
|
97 |
+
@classmethod
|
98 |
+
def INPUT_TYPES(s):
|
99 |
+
return define_preprocessor_inputs(
|
100 |
+
bbox_detector = INPUT.COMBO(
|
101 |
+
["yolox_l.torchscript.pt", "yolox_l.onnx", "yolo_nas_l_fp16.onnx", "yolo_nas_m_fp16.onnx", "yolo_nas_s_fp16.onnx"],
|
102 |
+
default="yolox_l.torchscript.pt"
|
103 |
+
),
|
104 |
+
pose_estimator = INPUT.COMBO(
|
105 |
+
["rtmpose-m_ap10k_256_bs5.torchscript.pt", "rtmpose-m_ap10k_256.onnx"],
|
106 |
+
default="rtmpose-m_ap10k_256_bs5.torchscript.pt"
|
107 |
+
),
|
108 |
+
resolution = INPUT.RESOLUTION()
|
109 |
+
)
|
110 |
+
|
111 |
+
RETURN_TYPES = ("IMAGE", "POSE_KEYPOINT")
|
112 |
+
FUNCTION = "estimate_pose"
|
113 |
+
|
114 |
+
CATEGORY = "ControlNet Preprocessors/Faces and Poses Estimators"
|
115 |
+
|
116 |
+
def estimate_pose(self, image, resolution=512, bbox_detector="yolox_l.onnx", pose_estimator="rtmpose-m_ap10k_256.onnx", **kwargs):
|
117 |
+
if bbox_detector == "yolox_l.onnx":
|
118 |
+
yolo_repo = DWPOSE_MODEL_NAME
|
119 |
+
elif "yolox" in bbox_detector:
|
120 |
+
yolo_repo = "hr16/yolox-onnx"
|
121 |
+
elif "yolo_nas" in bbox_detector:
|
122 |
+
yolo_repo = "hr16/yolo-nas-fp16"
|
123 |
+
else:
|
124 |
+
raise NotImplementedError(f"Download mechanism for {bbox_detector}")
|
125 |
+
|
126 |
+
if pose_estimator == "dw-ll_ucoco_384.onnx":
|
127 |
+
pose_repo = DWPOSE_MODEL_NAME
|
128 |
+
elif pose_estimator.endswith(".onnx"):
|
129 |
+
pose_repo = "hr16/UnJIT-DWPose"
|
130 |
+
elif pose_estimator.endswith(".torchscript.pt"):
|
131 |
+
pose_repo = "hr16/DWPose-TorchScript-BatchSize5"
|
132 |
+
else:
|
133 |
+
raise NotImplementedError(f"Download mechanism for {pose_estimator}")
|
134 |
+
|
135 |
+
model = AnimalposeDetector.from_pretrained(
|
136 |
+
pose_repo,
|
137 |
+
yolo_repo,
|
138 |
+
det_filename=bbox_detector, pose_filename=pose_estimator,
|
139 |
+
torchscript_device=model_management.get_torch_device()
|
140 |
+
)
|
141 |
+
|
142 |
+
self.openpose_dicts = []
|
143 |
+
def func(image, **kwargs):
|
144 |
+
pose_img, openpose_dict = model(image, **kwargs)
|
145 |
+
self.openpose_dicts.append(openpose_dict)
|
146 |
+
return pose_img
|
147 |
+
|
148 |
+
out = common_annotator_call(func, image, image_and_json=True, resolution=resolution)
|
149 |
+
del model
|
150 |
+
return {
|
151 |
+
'ui': { "openpose_json": [json.dumps(self.openpose_dicts, indent=4)] },
|
152 |
+
"result": (out, self.openpose_dicts)
|
153 |
+
}
|
154 |
+
|
155 |
+
NODE_CLASS_MAPPINGS = {
|
156 |
+
"DWPreprocessor": DWPose_Preprocessor,
|
157 |
+
"AnimalPosePreprocessor": AnimalPose_Preprocessor
|
158 |
+
}
|
159 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
160 |
+
"DWPreprocessor": "DWPose Estimator",
|
161 |
+
"AnimalPosePreprocessor": "AnimalPose Estimator (AP10K)"
|
162 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/hed.py
ADDED
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class HED_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
safe=INPUT.COMBO(["enable", "disable"]),
|
9 |
+
resolution=INPUT.RESOLUTION()
|
10 |
+
)
|
11 |
+
|
12 |
+
RETURN_TYPES = ("IMAGE",)
|
13 |
+
FUNCTION = "execute"
|
14 |
+
|
15 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
16 |
+
|
17 |
+
def execute(self, image, resolution=512, **kwargs):
|
18 |
+
from custom_controlnet_aux.hed import HEDdetector
|
19 |
+
|
20 |
+
model = HEDdetector.from_pretrained().to(model_management.get_torch_device())
|
21 |
+
out = common_annotator_call(model, image, resolution=resolution, safe = kwargs["safe"] == "enable")
|
22 |
+
del model
|
23 |
+
return (out, )
|
24 |
+
|
25 |
+
class Fake_Scribble_Preprocessor:
|
26 |
+
@classmethod
|
27 |
+
def INPUT_TYPES(s):
|
28 |
+
return define_preprocessor_inputs(
|
29 |
+
safe=INPUT.COMBO(["enable", "disable"]),
|
30 |
+
resolution=INPUT.RESOLUTION()
|
31 |
+
)
|
32 |
+
|
33 |
+
RETURN_TYPES = ("IMAGE",)
|
34 |
+
FUNCTION = "execute"
|
35 |
+
|
36 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
37 |
+
|
38 |
+
def execute(self, image, resolution=512, **kwargs):
|
39 |
+
from custom_controlnet_aux.hed import HEDdetector
|
40 |
+
|
41 |
+
model = HEDdetector.from_pretrained().to(model_management.get_torch_device())
|
42 |
+
out = common_annotator_call(model, image, resolution=resolution, scribble=True, safe=kwargs["safe"]=="enable")
|
43 |
+
del model
|
44 |
+
return (out, )
|
45 |
+
|
46 |
+
NODE_CLASS_MAPPINGS = {
|
47 |
+
"HEDPreprocessor": HED_Preprocessor,
|
48 |
+
"FakeScribblePreprocessor": Fake_Scribble_Preprocessor
|
49 |
+
}
|
50 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
51 |
+
"HEDPreprocessor": "HED Soft-Edge Lines",
|
52 |
+
"FakeScribblePreprocessor": "Fake Scribble Lines (aka scribble_hed)"
|
53 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/inpaint.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from ..utils import INPUT
|
3 |
+
|
4 |
+
class InpaintPreprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return dict(
|
8 |
+
required=dict(image=INPUT.IMAGE(), mask=INPUT.MASK()),
|
9 |
+
optional=dict(black_pixel_for_xinsir_cn=INPUT.BOOLEAN(False))
|
10 |
+
)
|
11 |
+
RETURN_TYPES = ("IMAGE",)
|
12 |
+
FUNCTION = "preprocess"
|
13 |
+
|
14 |
+
CATEGORY = "ControlNet Preprocessors/others"
|
15 |
+
|
16 |
+
def preprocess(self, image, mask, black_pixel_for_xinsir_cn=False):
|
17 |
+
mask = torch.nn.functional.interpolate(mask.reshape((-1, 1, mask.shape[-2], mask.shape[-1])), size=(image.shape[1], image.shape[2]), mode="bilinear")
|
18 |
+
mask = mask.movedim(1,-1).expand((-1,-1,-1,3))
|
19 |
+
image = image.clone()
|
20 |
+
if black_pixel_for_xinsir_cn:
|
21 |
+
masked_pixel = 0.0
|
22 |
+
else:
|
23 |
+
masked_pixel = -1.0
|
24 |
+
image[mask > 0.5] = masked_pixel
|
25 |
+
return (image,)
|
26 |
+
|
27 |
+
NODE_CLASS_MAPPINGS = {
|
28 |
+
"InpaintPreprocessor": InpaintPreprocessor
|
29 |
+
}
|
30 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
31 |
+
"InpaintPreprocessor": "Inpaint Preprocessor"
|
32 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/leres.py
ADDED
@@ -0,0 +1,32 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class LERES_Depth_Map_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
rm_nearest=INPUT.FLOAT(max=100.0),
|
9 |
+
rm_background=INPUT.FLOAT(max=100.0),
|
10 |
+
boost=INPUT.COMBO(["disable", "enable"]),
|
11 |
+
resolution=INPUT.RESOLUTION()
|
12 |
+
)
|
13 |
+
|
14 |
+
RETURN_TYPES = ("IMAGE",)
|
15 |
+
FUNCTION = "execute"
|
16 |
+
|
17 |
+
CATEGORY = "ControlNet Preprocessors/Normal and Depth Estimators"
|
18 |
+
|
19 |
+
def execute(self, image, rm_nearest=0, rm_background=0, resolution=512, boost="disable", **kwargs):
|
20 |
+
from custom_controlnet_aux.leres import LeresDetector
|
21 |
+
|
22 |
+
model = LeresDetector.from_pretrained().to(model_management.get_torch_device())
|
23 |
+
out = common_annotator_call(model, image, resolution=resolution, thr_a=rm_nearest, thr_b=rm_background, boost=boost == "enable")
|
24 |
+
del model
|
25 |
+
return (out, )
|
26 |
+
|
27 |
+
NODE_CLASS_MAPPINGS = {
|
28 |
+
"LeReS-DepthMapPreprocessor": LERES_Depth_Map_Preprocessor
|
29 |
+
}
|
30 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
31 |
+
"LeReS-DepthMapPreprocessor": "LeReS Depth Map (enable boost for leres++)"
|
32 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/lineart.py
ADDED
@@ -0,0 +1,30 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class LineArt_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(
|
8 |
+
coarse=INPUT.COMBO((["disable", "enable"])),
|
9 |
+
resolution=INPUT.RESOLUTION()
|
10 |
+
)
|
11 |
+
|
12 |
+
RETURN_TYPES = ("IMAGE",)
|
13 |
+
FUNCTION = "execute"
|
14 |
+
|
15 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
16 |
+
|
17 |
+
def execute(self, image, resolution=512, **kwargs):
|
18 |
+
from custom_controlnet_aux.lineart import LineartDetector
|
19 |
+
|
20 |
+
model = LineartDetector.from_pretrained().to(model_management.get_torch_device())
|
21 |
+
out = common_annotator_call(model, image, resolution=resolution, coarse = kwargs["coarse"] == "enable")
|
22 |
+
del model
|
23 |
+
return (out, )
|
24 |
+
|
25 |
+
NODE_CLASS_MAPPINGS = {
|
26 |
+
"LineArtPreprocessor": LineArt_Preprocessor
|
27 |
+
}
|
28 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
29 |
+
"LineArtPreprocessor": "Realistic Lineart"
|
30 |
+
}
|
custom_nodes/comfyui_controlnet_aux/node_wrappers/lineart_anime.py
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from ..utils import common_annotator_call, define_preprocessor_inputs, INPUT
|
2 |
+
import comfy.model_management as model_management
|
3 |
+
|
4 |
+
class AnimeLineArt_Preprocessor:
|
5 |
+
@classmethod
|
6 |
+
def INPUT_TYPES(s):
|
7 |
+
return define_preprocessor_inputs(resolution=INPUT.RESOLUTION())
|
8 |
+
|
9 |
+
RETURN_TYPES = ("IMAGE",)
|
10 |
+
FUNCTION = "execute"
|
11 |
+
|
12 |
+
CATEGORY = "ControlNet Preprocessors/Line Extractors"
|
13 |
+
|
14 |
+
def execute(self, image, resolution=512, **kwargs):
|
15 |
+
from custom_controlnet_aux.lineart_anime import LineartAnimeDetector
|
16 |
+
|
17 |
+
model = LineartAnimeDetector.from_pretrained().to(model_management.get_torch_device())
|
18 |
+
out = common_annotator_call(model, image, resolution=resolution)
|
19 |
+
del model
|
20 |
+
return (out, )
|
21 |
+
|
22 |
+
NODE_CLASS_MAPPINGS = {
|
23 |
+
"AnimeLineArtPreprocessor": AnimeLineArt_Preprocessor
|
24 |
+
}
|
25 |
+
NODE_DISPLAY_NAME_MAPPINGS = {
|
26 |
+
"AnimeLineArtPreprocessor": "Anime Lineart"
|
27 |
+
}
|