PankhuriSharma9795's picture
Upload app.py
ba2c4c2 verified
raw
history blame
2.07 kB
# ---
# jupyter:
# jupytext:
# text_representation:
# extension: .py
# format_name: light
# format_version: '1.5'
# jupytext_version: 1.16.4
# kernelspec:
# display_name: Python 3 (ipykernel)
# language: python
# name: python3
# ---
# +
import streamlit as st
import pandas as pd
import numpy as np
import faiss
from sentence_transformers import SentenceTransformer
from huggingface_hub import hf_hub_download
import warnings
warnings.filterwarnings('ignore')
@st.cache_resource
def load_artifacts():
repo_id = "PankhuriSharma9795/SHL_Model_Assets"
# Load SBERT model
model_dir = hf_hub_download(repo_id="PankhuriSharma9795/SHL_model_Asset", filename="config.json", repo_type="model")
model = SentenceTransformer(model_dir.replace("config.json", ""))
# Load FAISS index
faiss_path = hf_hub_download(repo_id="PankhuriSharma9795/SHL_model_Asset", filename="faiss_index.index", repo_type="model")
index = faiss.read_index(faiss_path)
# Load CSV
csv_path = hf_hub_download(repo_id="PankhuriSharma9795/SHL_model_Asset", filename="assessment_data.csv", repo_type="model")
df = pd.read_csv(csv_path)
return model, index, df
def recommend_assessments(profile_text, model, index, df, top_n=10):
profile_embedding = model.encode([profile_text]).astype('float32')
_, indices = index.search(profile_embedding, top_n)
return df.iloc[indices[0]]
# Streamlit UI
st.title("πŸ” SHL Assessment Recommender")
profile = st.text_area("✍️ Enter your job role or career aspiration:",
"Looking for a leadership role in financial planning and client management")
if st.button("Get Recommendations"):
model, index, df = load_artifacts()
results = recommend_assessments(profile, model, index, df, top_n=10)
st.subheader("🧠 Top 10 Matching Assessments")
st.dataframe(results[['Assesment Name', 'cleaned_text', 'Duration',
'Remote Testing Support', 'URL', 'Adaptive/IRT', 'Job Type']].reset_index(drop=True))
# -