Delete app.py
Browse files
app.py
DELETED
@@ -1,62 +0,0 @@
|
|
1 |
-
# ---
|
2 |
-
# jupyter:
|
3 |
-
# jupytext:
|
4 |
-
# text_representation:
|
5 |
-
# extension: .py
|
6 |
-
# format_name: light
|
7 |
-
# format_version: '1.5'
|
8 |
-
# jupytext_version: 1.16.4
|
9 |
-
# kernelspec:
|
10 |
-
# display_name: Python 3 (ipykernel)
|
11 |
-
# language: python
|
12 |
-
# name: python3
|
13 |
-
# ---
|
14 |
-
|
15 |
-
# +
|
16 |
-
import streamlit as st
|
17 |
-
import pandas as pd
|
18 |
-
import numpy as np
|
19 |
-
import faiss
|
20 |
-
from sentence_transformers import SentenceTransformer
|
21 |
-
from huggingface_hub import hf_hub_download
|
22 |
-
import warnings
|
23 |
-
warnings.filterwarnings('ignore')
|
24 |
-
|
25 |
-
@st.cache_resource
|
26 |
-
def load_artifacts():
|
27 |
-
repo_id = "PankhuriSharma9795/SHL_Model_Assets"
|
28 |
-
|
29 |
-
# Load SBERT model
|
30 |
-
model_dir = hf_hub_download(repo_id="PankhuriSharma9795/SHL_model_Asset", filename="config.json", repo_type="model")
|
31 |
-
model = SentenceTransformer(model_dir.replace("config.json", ""))
|
32 |
-
|
33 |
-
# Load FAISS index
|
34 |
-
faiss_path = hf_hub_download(repo_id="PankhuriSharma9795/SHL_model_Asset", filename="faiss_index.index", repo_type="model")
|
35 |
-
index = faiss.read_index(faiss_path)
|
36 |
-
|
37 |
-
# Load CSV
|
38 |
-
csv_path = hf_hub_download(repo_id="PankhuriSharma9795/SHL_model_Asset", filename="assessment_data.csv", repo_type="model")
|
39 |
-
df = pd.read_csv(csv_path)
|
40 |
-
|
41 |
-
return model, index, df
|
42 |
-
|
43 |
-
def recommend_assessments(profile_text, model, index, df, top_n=10):
|
44 |
-
profile_embedding = model.encode([profile_text]).astype('float32')
|
45 |
-
_, indices = index.search(profile_embedding, top_n)
|
46 |
-
return df.iloc[indices[0]]
|
47 |
-
|
48 |
-
# Streamlit UI
|
49 |
-
st.title("🔍 SHL Assessment Recommender")
|
50 |
-
|
51 |
-
profile = st.text_area("✍️ Enter your job role or career aspiration:",
|
52 |
-
"Looking for a leadership role in financial planning and client management")
|
53 |
-
|
54 |
-
if st.button("Get Recommendations"):
|
55 |
-
model, index, df = load_artifacts()
|
56 |
-
results = recommend_assessments(profile, model, index, df, top_n=10)
|
57 |
-
st.subheader("🧠 Top 10 Matching Assessments")
|
58 |
-
st.dataframe(results[['Assesment Name', 'cleaned_text', 'Duration',
|
59 |
-
'Remote Testing Support', 'URL', 'Adaptive/IRT', 'Job Type']].reset_index(drop=True))
|
60 |
-
# -
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|