llama7b-irony / app.py
PierreEpron's picture
Update app.py
e9eb075 verified
import gradio as gr
import json
from datetime import datetime
import demoji
from huggingface_hub import CommitScheduler
from pathlib import Path
import re
from transformers import pipeline
from uuid import uuid4
import os
import tempfile
offload_dir='/offload'
os.makedirs(offload_dir) if not os.path.exists(offload_dir) else None
#based on https://huggingface.co/spaces/Wauplin/space_to_dataset_saver/blob/main/app_json.py
#data is saved at https://huggingface.co/datasets/MR17u/tweeteval-irony-mcc/tree/main
# JSON_DATASET_DIR = Path("json_dataset")
# JSON_DATASET_DIR.mkdir(parents=True, exist_ok=True)
# JSON_DATASET_PATH = JSON_DATASET_DIR / f"data-{uuid4()}.json"
prompt = '''### Instruction:
Classify if the following tweet is ironic or not
### Input:
{text}
### Response:
'''
# scheduler = CommitScheduler(
# repo_id="tweeteval-irony-mcc",
# repo_type="dataset",
# folder_path=JSON_DATASET_DIR,
# path_in_repo="data",
# )
classifier = pipeline("text-generation", model="meta-llama/Llama-2-7b-hf", low_cpu_mem_usage=True, device_map="auto", offload_folder=offload_dir)
classifier.load_lora_weights("PierreEpron/llama7b-irony", weight_name="adapter_model.safetensors")
def clean_brackets(text):
return text.replace('{', '(').replace('}', ')')
def clean_emojis(text, type:str = ''):
if type=='rem':
return demoji.replace(text, '')
elif type!='keep':
return demoji.replace_with_desc(text, type)
else:
return text
def clean_hashtags(text, hashtags=['#irony', '#sarcasm','#not']):
for hashtag in hashtags:
text = re.sub(hashtag, '', text, flags=re.I)
return re.sub(r' +', r' ', text)
def clean_text(text):
return re.sub(' {2,}', ' ',clean_emojis(clean_hashtags(clean_brackets(text)))).strip()
# def save_json(entry: str, result) -> None:
# with scheduler.lock:
# with JSON_DATASET_PATH.open("a") as f:
# result = json.loads(result.replace("'",'"'))[0]
# json.dump({"entry": entry, "label": result['label'], "score": result['score'], "datetime": datetime.now().isoformat()}, f)
# f.write("\n")
def classif(text: str):
return classifier(prompt.format(text=clean_text(text)))
with gr.Blocks() as demo:
with gr.Row():
entry = gr.Textbox(label="Input")
result = gr.Textbox(label="Classification")
input_btn = gr.Button("Submit")
input_btn.click(fn=classif, inputs=entry, outputs=result).success(
fn=print, #save_json,
inputs=[entry, result],
outputs=None
)
demo.launch()