Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
import torchaudio | |
import librosa | |
import numpy as np | |
from pydub import AudioSegment | |
import yaml | |
from modules.commons import build_model, load_checkpoint, recursive_munch | |
from hf_utils import load_custom_model_from_hf | |
from modules.campplus.DTDNN import CAMPPlus | |
from modules.bigvgan import bigvgan | |
from modules.audio import mel_spectrogram | |
from modules.rmvpe import RMVPE | |
from transformers import AutoFeatureExtractor, WhisperModel | |
class SeedVCWrapper: | |
def __init__(self, device=None): | |
""" | |
Initialize the Seed-VC wrapper with all necessary models and configurations. | |
Args: | |
device: torch device to use. If None, will be automatically determined. | |
""" | |
# Set device | |
if device is None: | |
if torch.cuda.is_available(): | |
self.device = torch.device("cuda") | |
elif torch.backends.mps.is_available(): | |
self.device = torch.device("mps") | |
else: | |
self.device = torch.device("cpu") | |
else: | |
self.device = device | |
# Load base model and configuration | |
self._load_base_model() | |
# Load F0 conditioned model | |
self._load_f0_model() | |
# Load additional modules | |
self._load_additional_modules() | |
# Set streaming parameters | |
self.overlap_frame_len = 16 | |
self.bitrate = "320k" | |
def _load_base_model(self): | |
"""Load the base DiT model for voice conversion.""" | |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf( | |
"Plachta/Seed-VC", | |
"DiT_seed_v2_uvit_whisper_small_wavenet_bigvgan_pruned.pth", | |
"config_dit_mel_seed_uvit_whisper_small_wavenet.yml" | |
) | |
config = yaml.safe_load(open(dit_config_path, 'r')) | |
model_params = recursive_munch(config['model_params']) | |
self.model = build_model(model_params, stage='DiT') | |
self.hop_length = config['preprocess_params']['spect_params']['hop_length'] | |
self.sr = config['preprocess_params']['sr'] | |
# Load checkpoints | |
self.model, _, _, _ = load_checkpoint( | |
self.model, None, dit_checkpoint_path, | |
load_only_params=True, ignore_modules=[], is_distributed=False | |
) | |
for key in self.model: | |
self.model[key].eval() | |
self.model[key].to(self.device) | |
self.model.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) | |
# Set up mel spectrogram function | |
mel_fn_args = { | |
"n_fft": config['preprocess_params']['spect_params']['n_fft'], | |
"win_size": config['preprocess_params']['spect_params']['win_length'], | |
"hop_size": config['preprocess_params']['spect_params']['hop_length'], | |
"num_mels": config['preprocess_params']['spect_params']['n_mels'], | |
"sampling_rate": self.sr, | |
"fmin": 0, | |
"fmax": None, | |
"center": False | |
} | |
self.to_mel = lambda x: mel_spectrogram(x, **mel_fn_args) | |
# Load whisper model | |
whisper_name = model_params.speech_tokenizer.whisper_name if hasattr(model_params.speech_tokenizer, 'whisper_name') else "openai/whisper-small" | |
self.whisper_model = WhisperModel.from_pretrained(whisper_name, torch_dtype=torch.float16).to(self.device) | |
del self.whisper_model.decoder | |
self.whisper_feature_extractor = AutoFeatureExtractor.from_pretrained(whisper_name) | |
def _load_f0_model(self): | |
"""Load the F0 conditioned model for voice conversion.""" | |
dit_checkpoint_path, dit_config_path = load_custom_model_from_hf( | |
"Plachta/Seed-VC", | |
"DiT_seed_v2_uvit_whisper_base_f0_44k_bigvgan_pruned_ft_ema.pth", | |
"config_dit_mel_seed_uvit_whisper_base_f0_44k.yml" | |
) | |
config = yaml.safe_load(open(dit_config_path, 'r')) | |
model_params = recursive_munch(config['model_params']) | |
self.model_f0 = build_model(model_params, stage='DiT') | |
self.hop_length_f0 = config['preprocess_params']['spect_params']['hop_length'] | |
self.sr_f0 = config['preprocess_params']['sr'] | |
# Load checkpoints | |
self.model_f0, _, _, _ = load_checkpoint( | |
self.model_f0, None, dit_checkpoint_path, | |
load_only_params=True, ignore_modules=[], is_distributed=False | |
) | |
for key in self.model_f0: | |
self.model_f0[key].eval() | |
self.model_f0[key].to(self.device) | |
self.model_f0.cfm.estimator.setup_caches(max_batch_size=1, max_seq_length=8192) | |
# Set up mel spectrogram function for F0 model | |
mel_fn_args_f0 = { | |
"n_fft": config['preprocess_params']['spect_params']['n_fft'], | |
"win_size": config['preprocess_params']['spect_params']['win_length'], | |
"hop_size": config['preprocess_params']['spect_params']['hop_length'], | |
"num_mels": config['preprocess_params']['spect_params']['n_mels'], | |
"sampling_rate": self.sr_f0, | |
"fmin": 0, | |
"fmax": None, | |
"center": False | |
} | |
self.to_mel_f0 = lambda x: mel_spectrogram(x, **mel_fn_args_f0) | |
def _load_additional_modules(self): | |
"""Load additional modules like CAMPPlus, BigVGAN, and RMVPE.""" | |
# Load CAMPPlus | |
campplus_ckpt_path = load_custom_model_from_hf("funasr/campplus", "campplus_cn_common.bin", config_filename=None) | |
self.campplus_model = CAMPPlus(feat_dim=80, embedding_size=192) | |
self.campplus_model.load_state_dict(torch.load(campplus_ckpt_path, map_location="cpu")) | |
self.campplus_model.eval() | |
self.campplus_model.to(self.device) | |
# Load BigVGAN models | |
self.bigvgan_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_22khz_80band_256x', use_cuda_kernel=False) | |
self.bigvgan_model.remove_weight_norm() | |
self.bigvgan_model = self.bigvgan_model.eval().to(self.device) | |
self.bigvgan_44k_model = bigvgan.BigVGAN.from_pretrained('nvidia/bigvgan_v2_44khz_128band_512x', use_cuda_kernel=False) | |
self.bigvgan_44k_model.remove_weight_norm() | |
self.bigvgan_44k_model = self.bigvgan_44k_model.eval().to(self.device) | |
# Load RMVPE for F0 extraction | |
model_path = load_custom_model_from_hf("lj1995/VoiceConversionWebUI", "rmvpe.pt", None) | |
self.rmvpe = RMVPE(model_path, is_half=False, device=self.device) | |
def adjust_f0_semitones(f0_sequence, n_semitones): | |
"""Adjust F0 values by a number of semitones.""" | |
factor = 2 ** (n_semitones / 12) | |
return f0_sequence * factor | |
def crossfade(chunk1, chunk2, overlap): | |
"""Apply crossfade between two audio chunks.""" | |
fade_out = np.cos(np.linspace(0, np.pi / 2, overlap)) ** 2 | |
fade_in = np.cos(np.linspace(np.pi / 2, 0, overlap)) ** 2 | |
if len(chunk2) < overlap: | |
chunk2[:overlap] = chunk2[:overlap] * fade_in[:len(chunk2)] + (chunk1[-overlap:] * fade_out)[:len(chunk2)] | |
else: | |
chunk2[:overlap] = chunk2[:overlap] * fade_in + chunk1[-overlap:] * fade_out | |
return chunk2 | |
def _stream_wave_chunks(self, vc_wave, processed_frames, vc_target, overlap_wave_len, | |
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output, sr): | |
""" | |
Helper method to handle streaming wave chunks. | |
Args: | |
vc_wave: The current wave chunk | |
processed_frames: Number of frames processed so far | |
vc_target: The target mel spectrogram | |
overlap_wave_len: Length of overlap between chunks | |
generated_wave_chunks: List of generated wave chunks | |
previous_chunk: Previous wave chunk for crossfading | |
is_last_chunk: Whether this is the last chunk | |
stream_output: Whether to stream the output | |
sr: Sample rate | |
Returns: | |
Tuple of (processed_frames, previous_chunk, should_break, mp3_bytes, full_audio) | |
where should_break indicates if processing should stop | |
mp3_bytes is the MP3 bytes if streaming, None otherwise | |
full_audio is the full audio if this is the last chunk, None otherwise | |
""" | |
mp3_bytes = None | |
full_audio = None | |
if processed_frames == 0: | |
if is_last_chunk: | |
output_wave = vc_wave[0].cpu().numpy() | |
generated_wave_chunks.append(output_wave) | |
if stream_output: | |
output_wave_int16 = (output_wave * 32768.0).astype(np.int16) | |
mp3_bytes = AudioSegment( | |
output_wave_int16.tobytes(), frame_rate=sr, | |
sample_width=output_wave_int16.dtype.itemsize, channels=1 | |
).export(format="mp3", bitrate=self.bitrate).read() | |
full_audio = (sr, np.concatenate(generated_wave_chunks)) | |
else: | |
return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks) | |
return processed_frames, previous_chunk, True, mp3_bytes, full_audio | |
output_wave = vc_wave[0, :-overlap_wave_len].cpu().numpy() | |
generated_wave_chunks.append(output_wave) | |
previous_chunk = vc_wave[0, -overlap_wave_len:] | |
processed_frames += vc_target.size(2) - self.overlap_frame_len | |
if stream_output: | |
output_wave_int16 = (output_wave * 32768.0).astype(np.int16) | |
mp3_bytes = AudioSegment( | |
output_wave_int16.tobytes(), frame_rate=sr, | |
sample_width=output_wave_int16.dtype.itemsize, channels=1 | |
).export(format="mp3", bitrate=self.bitrate).read() | |
elif is_last_chunk: | |
output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0].cpu().numpy(), overlap_wave_len) | |
generated_wave_chunks.append(output_wave) | |
processed_frames += vc_target.size(2) - self.overlap_frame_len | |
if stream_output: | |
output_wave_int16 = (output_wave * 32768.0).astype(np.int16) | |
mp3_bytes = AudioSegment( | |
output_wave_int16.tobytes(), frame_rate=sr, | |
sample_width=output_wave_int16.dtype.itemsize, channels=1 | |
).export(format="mp3", bitrate=self.bitrate).read() | |
full_audio = (sr, np.concatenate(generated_wave_chunks)) | |
else: | |
return processed_frames, previous_chunk, True, None, np.concatenate(generated_wave_chunks) | |
return processed_frames, previous_chunk, True, mp3_bytes, full_audio | |
else: | |
output_wave = self.crossfade(previous_chunk.cpu().numpy(), vc_wave[0, :-overlap_wave_len].cpu().numpy(), overlap_wave_len) | |
generated_wave_chunks.append(output_wave) | |
previous_chunk = vc_wave[0, -overlap_wave_len:] | |
processed_frames += vc_target.size(2) - self.overlap_frame_len | |
if stream_output: | |
output_wave_int16 = (output_wave * 32768.0).astype(np.int16) | |
mp3_bytes = AudioSegment( | |
output_wave_int16.tobytes(), frame_rate=sr, | |
sample_width=output_wave_int16.dtype.itemsize, channels=1 | |
).export(format="mp3", bitrate=self.bitrate).read() | |
return processed_frames, previous_chunk, False, mp3_bytes, full_audio | |
def _process_whisper_features(self, audio_16k, is_source=True): | |
"""Process audio through Whisper model to extract features.""" | |
if audio_16k.size(-1) <= 16000 * 30: | |
# If audio is short enough, process in one go | |
inputs = self.whisper_feature_extractor( | |
[audio_16k.squeeze(0).cpu().numpy()], | |
return_tensors="pt", | |
return_attention_mask=True, | |
sampling_rate=16000 | |
) | |
input_features = self.whisper_model._mask_input_features( | |
inputs.input_features, attention_mask=inputs.attention_mask | |
).to(self.device) | |
outputs = self.whisper_model.encoder( | |
input_features.to(self.whisper_model.encoder.dtype), | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
) | |
features = outputs.last_hidden_state.to(torch.float32) | |
features = features[:, :audio_16k.size(-1) // 320 + 1] | |
else: | |
# Process long audio in chunks | |
overlapping_time = 5 # 5 seconds | |
features_list = [] | |
buffer = None | |
traversed_time = 0 | |
while traversed_time < audio_16k.size(-1): | |
if buffer is None: # first chunk | |
chunk = audio_16k[:, traversed_time:traversed_time + 16000 * 30] | |
else: | |
chunk = torch.cat([ | |
buffer, | |
audio_16k[:, traversed_time:traversed_time + 16000 * (30 - overlapping_time)] | |
], dim=-1) | |
inputs = self.whisper_feature_extractor( | |
[chunk.squeeze(0).cpu().numpy()], | |
return_tensors="pt", | |
return_attention_mask=True, | |
sampling_rate=16000 | |
) | |
input_features = self.whisper_model._mask_input_features( | |
inputs.input_features, attention_mask=inputs.attention_mask | |
).to(self.device) | |
outputs = self.whisper_model.encoder( | |
input_features.to(self.whisper_model.encoder.dtype), | |
head_mask=None, | |
output_attentions=False, | |
output_hidden_states=False, | |
return_dict=True, | |
) | |
chunk_features = outputs.last_hidden_state.to(torch.float32) | |
chunk_features = chunk_features[:, :chunk.size(-1) // 320 + 1] | |
if traversed_time == 0: | |
features_list.append(chunk_features) | |
else: | |
features_list.append(chunk_features[:, 50 * overlapping_time:]) | |
buffer = chunk[:, -16000 * overlapping_time:] | |
traversed_time += 30 * 16000 if traversed_time == 0 else chunk.size(-1) - 16000 * overlapping_time | |
features = torch.cat(features_list, dim=1) | |
return features | |
def convert_voice(self, source, target, diffusion_steps=10, length_adjust=1.0, | |
inference_cfg_rate=0.7, f0_condition=False, auto_f0_adjust=True, | |
pitch_shift=0, stream_output=True): | |
""" | |
Convert both timbre and voice from source to target. | |
Args: | |
source: Path to source audio file | |
target: Path to target audio file | |
diffusion_steps: Number of diffusion steps (default: 10) | |
length_adjust: Length adjustment factor (default: 1.0) | |
inference_cfg_rate: Inference CFG rate (default: 0.7) | |
f0_condition: Whether to use F0 conditioning (default: False) | |
auto_f0_adjust: Whether to automatically adjust F0 (default: True) | |
pitch_shift: Pitch shift in semitones (default: 0) | |
stream_output: Whether to stream the output (default: True) | |
Returns: | |
If stream_output is True, yields (mp3_bytes, full_audio) tuples | |
If stream_output is False, returns the full audio as a numpy array | |
""" | |
# Select appropriate models based on F0 condition | |
inference_module = self.model if not f0_condition else self.model_f0 | |
mel_fn = self.to_mel if not f0_condition else self.to_mel_f0 | |
bigvgan_fn = self.bigvgan_model if not f0_condition else self.bigvgan_44k_model | |
sr = 22050 if not f0_condition else 44100 | |
hop_length = 256 if not f0_condition else 512 | |
max_context_window = sr // hop_length * 30 | |
overlap_wave_len = self.overlap_frame_len * hop_length | |
# Load audio | |
source_audio = librosa.load(source, sr=sr)[0] | |
ref_audio = librosa.load(target, sr=sr)[0] | |
# Process audio | |
source_audio = torch.tensor(source_audio).unsqueeze(0).float().to(self.device) | |
ref_audio = torch.tensor(ref_audio[:sr * 25]).unsqueeze(0).float().to(self.device) | |
# Resample to 16kHz for feature extraction | |
ref_waves_16k = torchaudio.functional.resample(ref_audio, sr, 16000) | |
converted_waves_16k = torchaudio.functional.resample(source_audio, sr, 16000) | |
# Extract Whisper features | |
S_alt = self._process_whisper_features(converted_waves_16k, is_source=True) | |
S_ori = self._process_whisper_features(ref_waves_16k, is_source=False) | |
# Compute mel spectrograms | |
mel = mel_fn(source_audio.to(self.device).float()) | |
mel2 = mel_fn(ref_audio.to(self.device).float()) | |
# Set target lengths | |
target_lengths = torch.LongTensor([int(mel.size(2) * length_adjust)]).to(mel.device) | |
target2_lengths = torch.LongTensor([mel2.size(2)]).to(mel2.device) | |
# Compute style features | |
feat2 = torchaudio.compliance.kaldi.fbank( | |
ref_waves_16k, | |
num_mel_bins=80, | |
dither=0, | |
sample_frequency=16000 | |
) | |
feat2 = feat2 - feat2.mean(dim=0, keepdim=True) | |
style2 = self.campplus_model(feat2.unsqueeze(0)) | |
# Process F0 if needed | |
if f0_condition: | |
F0_ori = self.rmvpe.infer_from_audio(ref_waves_16k[0], thred=0.03) | |
F0_alt = self.rmvpe.infer_from_audio(converted_waves_16k[0], thred=0.03) | |
if self.device == "mps": | |
F0_ori = torch.from_numpy(F0_ori).float().to(self.device)[None] | |
F0_alt = torch.from_numpy(F0_alt).float().to(self.device)[None] | |
else: | |
F0_ori = torch.from_numpy(F0_ori).to(self.device)[None] | |
F0_alt = torch.from_numpy(F0_alt).to(self.device)[None] | |
voiced_F0_ori = F0_ori[F0_ori > 1] | |
voiced_F0_alt = F0_alt[F0_alt > 1] | |
log_f0_alt = torch.log(F0_alt + 1e-5) | |
voiced_log_f0_ori = torch.log(voiced_F0_ori + 1e-5) | |
voiced_log_f0_alt = torch.log(voiced_F0_alt + 1e-5) | |
median_log_f0_ori = torch.median(voiced_log_f0_ori) | |
median_log_f0_alt = torch.median(voiced_log_f0_alt) | |
# Shift alt log f0 level to ori log f0 level | |
shifted_log_f0_alt = log_f0_alt.clone() | |
if auto_f0_adjust: | |
shifted_log_f0_alt[F0_alt > 1] = log_f0_alt[F0_alt > 1] - median_log_f0_alt + median_log_f0_ori | |
shifted_f0_alt = torch.exp(shifted_log_f0_alt) | |
if pitch_shift != 0: | |
shifted_f0_alt[F0_alt > 1] = self.adjust_f0_semitones(shifted_f0_alt[F0_alt > 1], pitch_shift) | |
else: | |
F0_ori = None | |
F0_alt = None | |
shifted_f0_alt = None | |
# Length regulation | |
cond, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator( | |
S_alt, ylens=target_lengths, n_quantizers=3, f0=shifted_f0_alt | |
) | |
prompt_condition, _, codes, commitment_loss, codebook_loss = inference_module.length_regulator( | |
S_ori, ylens=target2_lengths, n_quantizers=3, f0=F0_ori | |
) | |
# Process in chunks for streaming | |
max_source_window = max_context_window - mel2.size(2) | |
processed_frames = 0 | |
generated_wave_chunks = [] | |
previous_chunk = None | |
# Generate chunk by chunk and stream the output | |
while processed_frames < cond.size(1): | |
chunk_cond = cond[:, processed_frames:processed_frames + max_source_window] | |
is_last_chunk = processed_frames + max_source_window >= cond.size(1) | |
cat_condition = torch.cat([prompt_condition, chunk_cond], dim=1) | |
with torch.autocast(device_type=self.device.type, dtype=torch.float16): | |
# Voice Conversion | |
vc_target = inference_module.cfm.inference( | |
cat_condition, | |
torch.LongTensor([cat_condition.size(1)]).to(mel2.device), | |
mel2, style2, None, diffusion_steps, | |
inference_cfg_rate=inference_cfg_rate | |
) | |
vc_target = vc_target[:, :, mel2.size(-1):] | |
vc_wave = bigvgan_fn(vc_target.float())[0] | |
processed_frames, previous_chunk, should_break, mp3_bytes, full_audio = self._stream_wave_chunks( | |
vc_wave, processed_frames, vc_target, overlap_wave_len, | |
generated_wave_chunks, previous_chunk, is_last_chunk, stream_output, sr | |
) | |
if stream_output and mp3_bytes is not None: | |
yield mp3_bytes, full_audio | |
if should_break: | |
if not stream_output: | |
return full_audio | |
break | |
if not stream_output: | |
return np.concatenate(generated_wave_chunks) | |
return None, None |