|
|
|
|
|
|
|
import streamlit as st |
|
import pandas as pd |
|
import requests |
|
import re |
|
import fitz |
|
import io |
|
import matplotlib.pyplot as plt |
|
from PIL import Image |
|
from transformers import AutoProcessor, AutoModelForVision2Seq |
|
from docling_core.types.doc import DoclingDocument |
|
from docling_core.types.doc.document import DocTagsDocument |
|
import torch |
|
import os |
|
from huggingface_hub import InferenceClient |
|
|
|
|
|
|
|
|
|
st.set_page_config( |
|
page_title="Choose Your Own Adventure (Topic Extraction) PDF Analysis App", |
|
page_icon=":bar_chart:", |
|
layout="centered", |
|
initial_sidebar_state="auto", |
|
menu_items={ |
|
'Get Help': 'mailto:[email protected]', |
|
'About': "This app is built to support PDF analysis" |
|
} |
|
) |
|
|
|
|
|
|
|
|
|
|
|
st.sidebar.title("📌 About This App") |
|
|
|
st.sidebar.markdown(""" |
|
#### ⚠️ **Important Note on Processing Time** |
|
|
|
This app uses the **SmolDocling** model (`ds4sd/SmolDocling-256M-preview`) to convert PDF pages into markdown text. Currently, the model is running on a CPU-based environment (**CPU basic | 2 vCPU - 16 GB RAM**), and therefore processing each page can take a significant amount of time (approximately **6 minutes per page**). |
|
|
|
**Note: It is recommended that you upload single-page PDFs, as testing showed approximately 6 minutes of processing time per page.** |
|
|
|
This setup is suitable for testing and demonstration purposes, but **not efficient for real-world usage**. |
|
|
|
For faster processing, consider running the optimized version `ds4sd/SmolDocling-256M-preview-mlx-bf16` locally on a MacBook, where it performs significantly faster. |
|
|
|
--- |
|
|
|
#### 🛠️ **How This App Works** |
|
|
|
Here's a quick overview of the workflow: |
|
|
|
1. **Upload PDF**: You upload a PDF document using the uploader provided. |
|
2. **Convert PDF to Images**: The PDF is converted into individual images (one per page). |
|
3. **Extract Markdown from Images**: Each image is processed by the SmolDocling model to extract markdown-formatted text. |
|
4. **Enter Topics and Descriptions**: You provide specific topics and their descriptions you'd like to extract from the document. |
|
5. **Extract Excerpts**: The app uses the **meta-llama/Llama-3.1-70B-Instruct** model to extract exact quotes relevant to your provided topics. |
|
6. **Results in a DataFrame**: All extracted quotes and their topics are compiled into a structured DataFrame that you can preview and download. |
|
|
|
--- |
|
|
|
Please proceed by uploading your PDF file to begin the analysis. |
|
""") |
|
|
|
|
|
|
|
|
|
for key in ['pdf_processed', 'markdown_texts', 'df']: |
|
if key not in st.session_state: |
|
st.session_state[key] = False if key == 'pdf_processed' else [] |
|
|
|
|
|
|
|
|
|
hf_api_key = os.getenv('HF_API_KEY') |
|
if not hf_api_key: |
|
raise ValueError("HF_API_KEY not set in environment variables") |
|
|
|
client = InferenceClient(api_key=hf_api_key) |
|
|
|
|
|
|
|
|
|
class AIAnalysis: |
|
def __init__(self, client): |
|
self.client = client |
|
|
|
def prepare_llm_input(self, document_content, topics): |
|
topic_descriptions = "\n".join([f"- **{t}**: {d}" for t, d in topics.items()]) |
|
return f"""Extract and summarize PDF notes based on topics: |
|
{topic_descriptions} |
|
|
|
Instructions: |
|
- Extract exact quotes per topic. |
|
- Ignore irrelevant topics. |
|
- Strictly follow this format: |
|
|
|
[Topic] |
|
- "Exact quote" |
|
|
|
Document Content: |
|
{document_content} |
|
""" |
|
|
|
def prompt_response_from_hf_llm(self, llm_input): |
|
system_prompt = """ |
|
You are an expert assistant tasked with extracting exact quotes from provided meeting notes based on given topics. |
|
|
|
Instructions: |
|
- Only extract exact quotes relevant to provided topics. |
|
- Ignore irrelevant content. |
|
- Strictly follow this format: |
|
|
|
[Topic] |
|
- "Exact quote" |
|
""" |
|
|
|
response = self.client.chat.completions.create( |
|
model="meta-llama/Llama-3.1-70B-Instruct", |
|
messages=[ |
|
{"role": "system", "content": system_prompt}, |
|
{"role": "user", "content": llm_input} |
|
], |
|
stream=True, |
|
temperature=0.5, |
|
max_tokens=1024, |
|
top_p=0.7 |
|
) |
|
|
|
response_content = "" |
|
for message in response: |
|
|
|
response_content += message.choices[0].delta.content |
|
|
|
print("Full AI Response:", response_content) |
|
return response_content.strip() |
|
|
|
def extract_text(self, response): |
|
return response |
|
|
|
def process_dataframe(self, df, topics): |
|
results = [] |
|
for _, row in df.iterrows(): |
|
llm_input = self.prepare_llm_input(row['Document_Text'], topics) |
|
response = self.prompt_response_from_hf_llm(llm_input) |
|
notes = self.extract_text(response) |
|
results.append({'Document_Text': row['Document_Text'], 'Topic_Summary': notes}) |
|
return pd.concat([df.reset_index(drop=True), pd.DataFrame(results)['Topic_Summary']], axis=1) |
|
|
|
|
|
|
|
|
|
@st.cache_resource |
|
def load_smol_docling(): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
processor = AutoProcessor.from_pretrained("ds4sd/SmolDocling-256M-preview") |
|
model = AutoModelForVision2Seq.from_pretrained( |
|
"ds4sd/SmolDocling-256M-preview", torch_dtype=torch.float32 |
|
).to(device) |
|
return model, processor |
|
|
|
model, processor = load_smol_docling() |
|
|
|
def convert_pdf_to_images(pdf_file, dpi=150, max_size=1600): |
|
images = [] |
|
doc = fitz.open(stream=pdf_file.read(), filetype="pdf") |
|
for page in doc: |
|
pix = page.get_pixmap(dpi=dpi) |
|
img = Image.open(io.BytesIO(pix.tobytes("png"))).convert("RGB") |
|
img.thumbnail((max_size, max_size), Image.LANCZOS) |
|
images.append(img) |
|
return images |
|
|
|
def extract_markdown_from_image(image): |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
prompt = processor.apply_chat_template([{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": "Convert this page to docling."}]}], add_generation_prompt=True) |
|
inputs = processor(text=prompt, images=[image], return_tensors="pt").to(device) |
|
with torch.no_grad(): |
|
generated_ids = model.generate(**inputs, max_new_tokens=1024) |
|
doctags = processor.batch_decode(generated_ids[:, inputs.input_ids.shape[1]:], skip_special_tokens=False)[0].replace("<end_of_utterance>", "").strip() |
|
doctags_doc = DocTagsDocument.from_doctags_and_image_pairs([doctags], [image]) |
|
doc = DoclingDocument(name="ExtractedDocument") |
|
doc.load_from_doctags(doctags_doc) |
|
return doc.export_to_markdown() |
|
|
|
|
|
def extract_excerpts(processed_df): |
|
rows = [] |
|
for _, r in processed_df.iterrows(): |
|
sections = re.split(r'\n(?=(?:\*\*|\[)?[A-Za-z/ ]+(?:\*\*|\])?\n- )', r['Topic_Summary']) |
|
for sec in sections: |
|
topic_match = re.match(r'(?:\*\*|\[)?([A-Za-z/ ]+)(?:\*\*|\])?', sec.strip()) |
|
if topic_match: |
|
topic = topic_match.group(1).strip() |
|
excerpts = re.findall(r'- "?([^"\n]+)"?', sec) |
|
for excerpt in excerpts: |
|
rows.append({ |
|
'Document_Text': r['Document_Text'], |
|
'Topic_Summary': r['Topic_Summary'], |
|
'Excerpt': excerpt.strip(), |
|
'Topic': topic |
|
}) |
|
print("Extracted Rows:", rows) |
|
return pd.DataFrame(rows) |
|
|
|
|
|
|
|
|
|
st.title("Choose Your Own Adventure (Topic Extraction) PDF Analysis App") |
|
|
|
uploaded_file = st.file_uploader("Upload PDF file", type=["pdf"]) |
|
|
|
if uploaded_file and not st.session_state['pdf_processed']: |
|
with st.spinner("Processing PDF..."): |
|
images = convert_pdf_to_images(uploaded_file) |
|
markdown_texts = [extract_markdown_from_image(img) for img in images] |
|
st.session_state['df'] = pd.DataFrame({'Document_Text': markdown_texts}) |
|
st.session_state['pdf_processed'] = True |
|
st.success("PDF processed successfully!") |
|
|
|
if st.session_state['pdf_processed']: |
|
st.markdown("### Extracted Text Preview") |
|
st.write(st.session_state['df'].head()) |
|
|
|
st.markdown("### Enter Topics and Descriptions") |
|
num_topics = st.number_input("Number of topics", 1, 10, 1) |
|
topics = {} |
|
for i in range(num_topics): |
|
topic = st.text_input(f"Topic {i+1} Name", key=f"topic_{i}") |
|
desc = st.text_area(f"Topic {i+1} Description", key=f"description_{i}") |
|
if topic and desc: |
|
topics[topic] = desc |
|
|
|
if st.button("Run Analysis"): |
|
if not topics: |
|
st.warning("Please enter at least one topic and description.") |
|
st.stop() |
|
|
|
analyzer = AIAnalysis(client) |
|
processed_df = analyzer.process_dataframe(st.session_state['df'], topics) |
|
extracted_df = extract_excerpts(processed_df) |
|
|
|
st.markdown("### Extracted Excerpts") |
|
st.dataframe(extracted_df) |
|
|
|
csv = extracted_df.to_csv(index=False) |
|
st.download_button("Download CSV", csv, "extracted_notes.csv", "text/csv") |
|
|
|
if not extracted_df.empty: |
|
topic_counts = extracted_df['Topic'].value_counts() |
|
fig, ax = plt.subplots() |
|
topic_counts.plot.bar(ax=ax, color='#3d9aa1') |
|
st.pyplot(fig) |
|
else: |
|
st.warning("No topics were extracted. Please check the input data and topics.") |
|
|
|
if not uploaded_file: |
|
st.info("Please upload a PDF file to begin.") |