Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,536 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/usr/bin/env python3
|
2 |
+
"""
|
3 |
+
Gradio Interface for Multimodal Chat with SSH Tunnel Keepalive and API Fallback
|
4 |
+
|
5 |
+
This application provides a Gradio web interface for multimodal chat with a
|
6 |
+
local vLLM model. It establishes an SSH tunnel to a local vLLM server and
|
7 |
+
provides fallback to Hyperbolic API if that server is unavailable.
|
8 |
+
"""
|
9 |
+
|
10 |
+
import os
|
11 |
+
import time
|
12 |
+
import threading
|
13 |
+
import logging
|
14 |
+
import base64
|
15 |
+
import json
|
16 |
+
from io import BytesIO
|
17 |
+
import gradio as gr
|
18 |
+
from openai import OpenAI
|
19 |
+
from ssh_tunneler import SSHTunnel
|
20 |
+
|
21 |
+
# Configure logging
|
22 |
+
logging.basicConfig(
|
23 |
+
level=logging.INFO,
|
24 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
25 |
+
)
|
26 |
+
logger = logging.getLogger('app')
|
27 |
+
|
28 |
+
# Get environment variables
|
29 |
+
SSH_HOST = os.environ.get('SSH_HOST')
|
30 |
+
SSH_PORT = int(os.environ.get('SSH_PORT', 22))
|
31 |
+
SSH_USERNAME = os.environ.get('SSH_USERNAME')
|
32 |
+
SSH_PASSWORD = os.environ.get('SSH_PASSWORD')
|
33 |
+
REMOTE_PORT = int(os.environ.get('REMOTE_PORT', 8000)) # vLLM API port on remote machine
|
34 |
+
LOCAL_PORT = int(os.environ.get('LOCAL_PORT', 8020)) # Local forwarded port
|
35 |
+
VLLM_MODEL = os.environ.get('MODEL_NAME', 'google/gemma-3-27b-it')
|
36 |
+
HYPERBOLIC_KEY = os.environ.get('HYPERBOLIC_XYZ_KEY')
|
37 |
+
FALLBACK_MODEL = 'Qwen/Qwen2.5-VL-72B-Instruct' # Fallback model at Hyperbolic
|
38 |
+
|
39 |
+
# API endpoints
|
40 |
+
VLLM_ENDPOINT = "http://localhost:" + str(LOCAL_PORT) + "/v1"
|
41 |
+
HYPERBOLIC_ENDPOINT = "https://api.hyperbolic.xyz/v1"
|
42 |
+
|
43 |
+
# Global variables
|
44 |
+
tunnel = None
|
45 |
+
use_fallback = False # Whether to use fallback API instead of local vLLM
|
46 |
+
tunnel_status = {"is_running": False, "message": "Initializing tunnel..."}
|
47 |
+
|
48 |
+
def start_ssh_tunnel():
|
49 |
+
"""
|
50 |
+
Start the SSH tunnel and monitor its status.
|
51 |
+
"""
|
52 |
+
global tunnel, use_fallback, tunnel_status
|
53 |
+
|
54 |
+
if not all([SSH_HOST, SSH_USERNAME, SSH_PASSWORD]):
|
55 |
+
logger.error("Missing SSH connection details. Falling back to Hyperbolic API.")
|
56 |
+
use_fallback = True
|
57 |
+
tunnel_status = {"is_running": False, "message": "Missing SSH credentials"}
|
58 |
+
return
|
59 |
+
|
60 |
+
try:
|
61 |
+
logger.info("Starting SSH tunnel...")
|
62 |
+
tunnel = SSHTunnel(
|
63 |
+
ssh_host=SSH_HOST,
|
64 |
+
ssh_port=SSH_PORT,
|
65 |
+
username=SSH_USERNAME,
|
66 |
+
password=SSH_PASSWORD,
|
67 |
+
remote_port=REMOTE_PORT,
|
68 |
+
local_port=LOCAL_PORT,
|
69 |
+
reconnect_interval=30,
|
70 |
+
keep_alive_interval=15
|
71 |
+
)
|
72 |
+
|
73 |
+
if tunnel.start():
|
74 |
+
logger.info("SSH tunnel started successfully")
|
75 |
+
use_fallback = False
|
76 |
+
tunnel_status = {"is_running": True, "message": "Connected"}
|
77 |
+
else:
|
78 |
+
logger.warning("Failed to start SSH tunnel. Falling back to Hyperbolic API.")
|
79 |
+
use_fallback = True
|
80 |
+
tunnel_status = {"is_running": False, "message": "Failed to connect"}
|
81 |
+
|
82 |
+
except Exception as e:
|
83 |
+
logger.error(f"Error starting SSH tunnel: {str(e)}")
|
84 |
+
use_fallback = True
|
85 |
+
tunnel_status = {"is_running": False, "message": f"Error: {str(e)}"}
|
86 |
+
|
87 |
+
def check_vllm_api_health():
|
88 |
+
"""
|
89 |
+
Check if the vLLM API is actually responding by querying the /v1/models endpoint.
|
90 |
+
|
91 |
+
Returns:
|
92 |
+
tuple: (is_healthy, message)
|
93 |
+
"""
|
94 |
+
try:
|
95 |
+
import requests
|
96 |
+
response = requests.get(f"{VLLM_ENDPOINT}/models", timeout=5)
|
97 |
+
if response.status_code == 200:
|
98 |
+
try:
|
99 |
+
data = response.json()
|
100 |
+
if 'data' in data and len(data['data']) > 0:
|
101 |
+
model_id = data['data'][0].get('id', 'Unknown model')
|
102 |
+
return True, f"API is healthy. Available model: {model_id}"
|
103 |
+
else:
|
104 |
+
return True, "API is healthy but no models found"
|
105 |
+
except Exception as e:
|
106 |
+
return False, f"API returned 200 but invalid JSON: {str(e)}"
|
107 |
+
else:
|
108 |
+
return False, f"API returned status code: {response.status_code}"
|
109 |
+
except Exception as e:
|
110 |
+
return False, f"API request failed: {str(e)}"
|
111 |
+
|
112 |
+
def monitor_tunnel():
|
113 |
+
"""
|
114 |
+
Monitor the SSH tunnel status and update the global variables.
|
115 |
+
"""
|
116 |
+
global tunnel, use_fallback, tunnel_status
|
117 |
+
|
118 |
+
logger.info("Starting tunnel monitoring thread")
|
119 |
+
|
120 |
+
while True:
|
121 |
+
try:
|
122 |
+
if tunnel is not None:
|
123 |
+
ssh_status = tunnel.check_status()
|
124 |
+
|
125 |
+
# Check if the tunnel is running
|
126 |
+
if ssh_status["is_running"]:
|
127 |
+
# Check if vLLM API is actually responding
|
128 |
+
is_healthy, message = check_vllm_api_health()
|
129 |
+
|
130 |
+
if is_healthy:
|
131 |
+
use_fallback = False
|
132 |
+
tunnel_status = {
|
133 |
+
"is_running": True,
|
134 |
+
"message": f"Connected and healthy. {message}"
|
135 |
+
}
|
136 |
+
else:
|
137 |
+
use_fallback = True
|
138 |
+
tunnel_status = {
|
139 |
+
"is_running": False,
|
140 |
+
"message": f"Tunnel connected but vLLM API unhealthy: {message}"
|
141 |
+
}
|
142 |
+
else:
|
143 |
+
use_fallback = True
|
144 |
+
tunnel_status = {
|
145 |
+
"is_running": False,
|
146 |
+
"message": f"Disconnected: {ssh_status['error'] or 'Unknown error'}"
|
147 |
+
}
|
148 |
+
else:
|
149 |
+
use_fallback = True
|
150 |
+
tunnel_status = {"is_running": False, "message": "Tunnel not initialized"}
|
151 |
+
|
152 |
+
except Exception as e:
|
153 |
+
logger.error(f"Error monitoring tunnel: {str(e)}")
|
154 |
+
use_fallback = True
|
155 |
+
tunnel_status = {"is_running": False, "message": f"Monitoring error: {str(e)}"}
|
156 |
+
|
157 |
+
time.sleep(5) # Check every 5 seconds
|
158 |
+
|
159 |
+
def get_openai_client(use_fallback_api=None):
|
160 |
+
"""
|
161 |
+
Create and return an OpenAI client configured for the appropriate endpoint.
|
162 |
+
|
163 |
+
Args:
|
164 |
+
use_fallback_api (bool): If True, use Hyperbolic API. If False, use local vLLM.
|
165 |
+
If None, use the global use_fallback setting.
|
166 |
+
|
167 |
+
Returns:
|
168 |
+
OpenAI: Configured OpenAI client
|
169 |
+
"""
|
170 |
+
global use_fallback
|
171 |
+
|
172 |
+
# Determine which API to use
|
173 |
+
if use_fallback_api is None:
|
174 |
+
use_fallback_api = use_fallback
|
175 |
+
|
176 |
+
if use_fallback_api:
|
177 |
+
logger.info("Using Hyperbolic API")
|
178 |
+
return OpenAI(
|
179 |
+
api_key=HYPERBOLIC_KEY,
|
180 |
+
base_url=HYPERBOLIC_ENDPOINT
|
181 |
+
)
|
182 |
+
else:
|
183 |
+
logger.info("Using local vLLM API")
|
184 |
+
return OpenAI(
|
185 |
+
api_key="EMPTY", # vLLM doesn't require an actual API key
|
186 |
+
base_url=VLLM_ENDPOINT
|
187 |
+
)
|
188 |
+
|
189 |
+
def get_model_name(use_fallback_api=None):
|
190 |
+
"""
|
191 |
+
Return the appropriate model name based on the API being used.
|
192 |
+
|
193 |
+
Args:
|
194 |
+
use_fallback_api (bool): If True, use fallback model. If None, use the global setting.
|
195 |
+
|
196 |
+
Returns:
|
197 |
+
str: Model name
|
198 |
+
"""
|
199 |
+
global use_fallback
|
200 |
+
|
201 |
+
if use_fallback_api is None:
|
202 |
+
use_fallback_api = use_fallback
|
203 |
+
|
204 |
+
return FALLBACK_MODEL if use_fallback_api else VLLM_MODEL
|
205 |
+
|
206 |
+
def convert_files_to_base64(files):
|
207 |
+
"""
|
208 |
+
Convert uploaded files to base64 strings.
|
209 |
+
|
210 |
+
Args:
|
211 |
+
files (list): List of file paths
|
212 |
+
|
213 |
+
Returns:
|
214 |
+
list: List of base64-encoded strings
|
215 |
+
"""
|
216 |
+
base64_images = []
|
217 |
+
for file in files:
|
218 |
+
with open(file, "rb") as image_file:
|
219 |
+
# Read image data and encode to base64
|
220 |
+
base64_data = base64.b64encode(image_file.read()).decode("utf-8")
|
221 |
+
base64_images.append(base64_data)
|
222 |
+
return base64_images
|
223 |
+
|
224 |
+
def process_chat(message_dict, history):
|
225 |
+
"""
|
226 |
+
Process user message and send to the appropriate API.
|
227 |
+
|
228 |
+
Args:
|
229 |
+
message_dict (dict): User message containing text and files
|
230 |
+
history (list): Chat history
|
231 |
+
|
232 |
+
Returns:
|
233 |
+
list: Updated chat history
|
234 |
+
"""
|
235 |
+
global use_fallback
|
236 |
+
|
237 |
+
text = message_dict.get("text", "")
|
238 |
+
files = message_dict.get("files", [])
|
239 |
+
|
240 |
+
# Add user message to history first
|
241 |
+
if not history:
|
242 |
+
history = []
|
243 |
+
|
244 |
+
# Add user message to chat history
|
245 |
+
if files:
|
246 |
+
# For each file, add a separate user message
|
247 |
+
for file in files:
|
248 |
+
history.append({"role": "user", "content": (file,)})
|
249 |
+
|
250 |
+
# Add text message if not empty
|
251 |
+
if text.strip():
|
252 |
+
history.append({"role": "user", "content": text})
|
253 |
+
else:
|
254 |
+
# If no text but files exist, don't add an empty message
|
255 |
+
if not files:
|
256 |
+
history.append({"role": "user", "content": ""})
|
257 |
+
|
258 |
+
# Convert all files to base64
|
259 |
+
base64_images = convert_files_to_base64(files)
|
260 |
+
|
261 |
+
# Prepare conversation history in OpenAI format
|
262 |
+
openai_messages = []
|
263 |
+
|
264 |
+
# Convert history to OpenAI format
|
265 |
+
for h in history:
|
266 |
+
if h["role"] == "user":
|
267 |
+
# Handle user messages
|
268 |
+
if isinstance(h["content"], tuple):
|
269 |
+
# This is a file-only message, skip for now
|
270 |
+
continue
|
271 |
+
else:
|
272 |
+
# Text message
|
273 |
+
openai_messages.append({
|
274 |
+
"role": "user",
|
275 |
+
"content": h["content"]
|
276 |
+
})
|
277 |
+
elif h["role"] == "assistant":
|
278 |
+
openai_messages.append({
|
279 |
+
"role": "assistant",
|
280 |
+
"content": h["content"]
|
281 |
+
})
|
282 |
+
|
283 |
+
# Handle images for the last user message if needed
|
284 |
+
if base64_images:
|
285 |
+
# Update the last user message to include image content
|
286 |
+
if openai_messages and openai_messages[-1]["role"] == "user":
|
287 |
+
# Get the last message
|
288 |
+
last_msg = openai_messages[-1]
|
289 |
+
|
290 |
+
# Format for OpenAI multimodal content structure
|
291 |
+
content_list = []
|
292 |
+
|
293 |
+
# Add text if there is any
|
294 |
+
if last_msg["content"]:
|
295 |
+
content_list.append({"type": "text", "text": last_msg["content"]})
|
296 |
+
|
297 |
+
# Add images
|
298 |
+
for img_b64 in base64_images:
|
299 |
+
content_list.append({
|
300 |
+
"type": "image_url",
|
301 |
+
"image_url": {
|
302 |
+
"url": f"data:image/jpeg;base64,{img_b64}"
|
303 |
+
}
|
304 |
+
})
|
305 |
+
|
306 |
+
# Replace the content with the multimodal content list
|
307 |
+
last_msg["content"] = content_list
|
308 |
+
|
309 |
+
# Try primary API first, fall back if needed
|
310 |
+
try:
|
311 |
+
# First try with the currently selected API (vLLM or fallback)
|
312 |
+
client = get_openai_client()
|
313 |
+
model = get_model_name()
|
314 |
+
|
315 |
+
response = client.chat.completions.create(
|
316 |
+
model=model,
|
317 |
+
messages=openai_messages,
|
318 |
+
stream=True # Use streaming for better UX
|
319 |
+
)
|
320 |
+
|
321 |
+
# Stream the response
|
322 |
+
assistant_message = ""
|
323 |
+
for chunk in response:
|
324 |
+
if hasattr(chunk.choices[0].delta, 'content') and chunk.choices[0].delta.content is not None:
|
325 |
+
assistant_message += chunk.choices[0].delta.content
|
326 |
+
# Update in real-time
|
327 |
+
history_with_stream = history.copy()
|
328 |
+
history_with_stream.append({"role": "assistant", "content": assistant_message})
|
329 |
+
yield history_with_stream
|
330 |
+
|
331 |
+
# Ensure we have the final message added
|
332 |
+
if not assistant_message:
|
333 |
+
assistant_message = "No response received from the model."
|
334 |
+
|
335 |
+
# Add assistant response to history if not already added
|
336 |
+
if not history or history[-1]["role"] != "assistant":
|
337 |
+
history.append({"role": "assistant", "content": assistant_message})
|
338 |
+
|
339 |
+
return history
|
340 |
+
|
341 |
+
except Exception as primary_error:
|
342 |
+
logger.error(f"Primary API error: {str(primary_error)}")
|
343 |
+
|
344 |
+
# If we're not already using fallback, try that
|
345 |
+
if not use_fallback:
|
346 |
+
try:
|
347 |
+
logger.info("Falling back to Hyperbolic API")
|
348 |
+
client = get_openai_client(use_fallback_api=True)
|
349 |
+
model = get_model_name(use_fallback_api=True)
|
350 |
+
|
351 |
+
response = client.chat.completions.create(
|
352 |
+
model=model,
|
353 |
+
messages=openai_messages,
|
354 |
+
stream=True
|
355 |
+
)
|
356 |
+
|
357 |
+
# Stream the response
|
358 |
+
assistant_message = ""
|
359 |
+
for chunk in response:
|
360 |
+
if hasattr(chunk.choices[0].delta, 'content') and chunk.choices[0].delta.content is not None:
|
361 |
+
assistant_message += chunk.choices[0].delta.content
|
362 |
+
# Update in real-time
|
363 |
+
history_with_stream = history.copy()
|
364 |
+
history_with_stream.append({"role": "assistant", "content": assistant_message})
|
365 |
+
yield history_with_stream
|
366 |
+
|
367 |
+
# Ensure we have the final message added
|
368 |
+
if not assistant_message:
|
369 |
+
assistant_message = "No response received from the fallback model."
|
370 |
+
|
371 |
+
# Add assistant response to history if not already added
|
372 |
+
if not history or history[-1]["role"] != "assistant":
|
373 |
+
history.append({"role": "assistant", "content": assistant_message})
|
374 |
+
|
375 |
+
# Update fallback status (global already declared at function start)
|
376 |
+
use_fallback = True
|
377 |
+
|
378 |
+
return history
|
379 |
+
|
380 |
+
except Exception as fallback_error:
|
381 |
+
logger.error(f"Fallback API error: {str(fallback_error)}")
|
382 |
+
error_msg = f"Error with both primary and fallback APIs. Primary: {str(primary_error)}. Fallback: {str(fallback_error)}"
|
383 |
+
history.append({"role": "assistant", "content": error_msg})
|
384 |
+
return history
|
385 |
+
else:
|
386 |
+
# Already using fallback, just report the error
|
387 |
+
error_msg = f"An error occurred with the model: {str(primary_error)}"
|
388 |
+
history.append({"role": "assistant", "content": error_msg})
|
389 |
+
return history
|
390 |
+
|
391 |
+
def get_tunnel_status_message():
|
392 |
+
"""
|
393 |
+
Return a formatted status message for display in the UI.
|
394 |
+
"""
|
395 |
+
global tunnel_status, use_fallback
|
396 |
+
|
397 |
+
api_mode = "Hyperbolic API" if use_fallback else "Local vLLM API"
|
398 |
+
model = get_model_name()
|
399 |
+
|
400 |
+
status_color = "🟢" if (tunnel_status["is_running"] and not use_fallback) else "🔴"
|
401 |
+
status_text = tunnel_status["message"]
|
402 |
+
|
403 |
+
return f"{status_color} Tunnel Status: {status_text}\nCurrent API: {api_mode}\nCurrent Model: {model}"
|
404 |
+
|
405 |
+
def toggle_api():
|
406 |
+
"""
|
407 |
+
Toggle between local vLLM and Hyperbolic API.
|
408 |
+
"""
|
409 |
+
global use_fallback
|
410 |
+
use_fallback = not use_fallback
|
411 |
+
|
412 |
+
api_mode = "Hyperbolic API" if use_fallback else "Local vLLM API"
|
413 |
+
model = get_model_name()
|
414 |
+
|
415 |
+
return f"Switched to {api_mode} using {model}"
|
416 |
+
|
417 |
+
# Start the SSH tunnel in a background thread
|
418 |
+
if __name__ == "__main__":
|
419 |
+
# Start the SSH tunnel
|
420 |
+
start_ssh_tunnel()
|
421 |
+
|
422 |
+
# Start the monitoring thread
|
423 |
+
monitor_thread = threading.Thread(target=monitor_tunnel, daemon=True)
|
424 |
+
monitor_thread.start()
|
425 |
+
|
426 |
+
# Create Gradio application with Blocks for more control
|
427 |
+
with gr.Blocks(theme="soft") as demo:
|
428 |
+
gr.Markdown("# Multimodal Chat Interface")
|
429 |
+
|
430 |
+
# Create chatbot component with message type
|
431 |
+
chatbot = gr.Chatbot(
|
432 |
+
label="Conversation",
|
433 |
+
type="messages",
|
434 |
+
show_copy_button=True,
|
435 |
+
avatar_images=("👤", "🗣️"),
|
436 |
+
height=400
|
437 |
+
)
|
438 |
+
|
439 |
+
# Create multimodal textbox for input
|
440 |
+
with gr.Row():
|
441 |
+
textbox = gr.MultimodalTextbox(
|
442 |
+
file_types=["image", "video"],
|
443 |
+
file_count="multiple",
|
444 |
+
placeholder="Type your message here and/or upload images...",
|
445 |
+
label="Message",
|
446 |
+
show_label=False,
|
447 |
+
scale=9
|
448 |
+
)
|
449 |
+
submit_btn = gr.Button("Send", size="sm", scale=1)
|
450 |
+
|
451 |
+
# Clear button
|
452 |
+
clear_btn = gr.Button("Clear Chat")
|
453 |
+
|
454 |
+
# Set up submit event chain
|
455 |
+
submit_event = textbox.submit(
|
456 |
+
fn=process_chat,
|
457 |
+
inputs=[textbox, chatbot],
|
458 |
+
outputs=chatbot
|
459 |
+
).then(
|
460 |
+
fn=lambda: {"text": "", "files": []},
|
461 |
+
inputs=None,
|
462 |
+
outputs=textbox
|
463 |
+
)
|
464 |
+
|
465 |
+
# Connect the submit button to the same functions
|
466 |
+
submit_btn.click(
|
467 |
+
fn=process_chat,
|
468 |
+
inputs=[textbox, chatbot],
|
469 |
+
outputs=chatbot
|
470 |
+
).then(
|
471 |
+
fn=lambda: {"text": "", "files": []},
|
472 |
+
inputs=None,
|
473 |
+
outputs=textbox
|
474 |
+
)
|
475 |
+
|
476 |
+
# Set up clear button
|
477 |
+
clear_btn.click(lambda: [], None, chatbot)
|
478 |
+
|
479 |
+
# Load example images if they exist
|
480 |
+
examples = []
|
481 |
+
|
482 |
+
# Define example images with paths
|
483 |
+
example_images = {
|
484 |
+
"dog_pic.jpg": "What breed is this?",
|
485 |
+
"ghostimg.png": "What's in this image?",
|
486 |
+
"newspaper.png": "Provide a python list of dicts about everything on this page."
|
487 |
+
}
|
488 |
+
|
489 |
+
# Check each image and add to examples if it exists
|
490 |
+
for img_name, prompt_text in example_images.items():
|
491 |
+
img_path = os.path.join(os.path.dirname(__file__), img_name)
|
492 |
+
if os.path.exists(img_path):
|
493 |
+
examples.append([{"text": prompt_text, "files": [img_path]}])
|
494 |
+
|
495 |
+
# Add examples if we have any
|
496 |
+
if examples:
|
497 |
+
gr.Examples(
|
498 |
+
examples=examples,
|
499 |
+
inputs=textbox
|
500 |
+
)
|
501 |
+
|
502 |
+
# Add status display
|
503 |
+
status_text = gr.Textbox(
|
504 |
+
label="Tunnel and API Status",
|
505 |
+
value=get_tunnel_status_message(),
|
506 |
+
interactive=False
|
507 |
+
)
|
508 |
+
|
509 |
+
# Refresh status button and toggle API button
|
510 |
+
with gr.Row():
|
511 |
+
refresh_btn = gr.Button("Refresh Status")
|
512 |
+
toggle_api_btn = gr.Button("Toggle API (Local/Hyperbolic)")
|
513 |
+
|
514 |
+
# Set up refresh status button
|
515 |
+
refresh_btn.click(
|
516 |
+
fn=get_tunnel_status_message,
|
517 |
+
inputs=None,
|
518 |
+
outputs=status_text
|
519 |
+
)
|
520 |
+
|
521 |
+
# Set up toggle API button
|
522 |
+
toggle_api_btn.click(
|
523 |
+
fn=toggle_api,
|
524 |
+
inputs=None,
|
525 |
+
outputs=status_text
|
526 |
+
)
|
527 |
+
|
528 |
+
# Just load the initial status without auto-refresh
|
529 |
+
demo.load(
|
530 |
+
fn=get_tunnel_status_message,
|
531 |
+
inputs=None,
|
532 |
+
outputs=status_text
|
533 |
+
)
|
534 |
+
|
535 |
+
# Launch the interface on a different port than the SSH tunnel
|
536 |
+
demo.launch()
|