from config import CONFIG, ModelConfig import os, copy, types, gc, sys, re, time, collections, asyncio from huggingface_hub import hf_hub_download from loguru import logger from snowflake import SnowflakeGenerator CompletionIdGenerator = SnowflakeGenerator(42, timestamp=1741101491595) from typing import List, Optional, Union, Any, Dict from pydantic import BaseModel, Field, model_validator from pydantic_settings import BaseSettings import numpy as np import torch if "cuda" in CONFIG.STRATEGY.lower() and not torch.cuda.is_available(): logger.info(f"CUDA not found, fall back to cpu") CONFIG.STRATEGY = "cpu fp16" if "cuda" in CONFIG.STRATEGY.lower(): from pynvml import * nvmlInit() gpu_h = nvmlDeviceGetHandleByIndex(0) torch.backends.cudnn.benchmark = True torch.backends.cudnn.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True os.environ["RWKV_V7_ON"] = "1" # enable this for rwkv-7 models os.environ["RWKV_JIT_ON"] = "1" os.environ["RWKV_CUDA_ON"] = ( "1" if CONFIG.RWKV_CUDA_ON and "cuda" in CONFIG.STRATEGY.lower() else "0" ) from rwkv.model import RWKV from rwkv.utils import PIPELINE, PIPELINE_ARGS from fastapi import FastAPI, HTTPException from fastapi.responses import StreamingResponse from fastapi.middleware.cors import CORSMiddleware from fastapi.staticfiles import StaticFiles from api_types import ( ChatMessage, ChatCompletion, ChatCompletionChunk, Usage, PromptTokensDetails, ChatCompletionChoice, ChatCompletionMessage, ) from utils import cleanMessages, parse_think_response class ModelStorage: MODEL_CONFIG: Optional[ModelConfig] = None model: Optional[RWKV] = None pipeline: Optional[PIPELINE] = None MODEL_STORAGE: Dict[str, ModelStorage] = {} DEFALUT_MODEL_NAME = None DEFAULT_REASONING_MODEL_NAME = None logger.info(f"STRATEGY - {CONFIG.STRATEGY}") for model_config in CONFIG.MODELS: logger.info(f"Load Model - {model_config.SERVICE_NAME}") if model_config.MODEL_FILE_PATH == None: model_config.MODEL_FILE_PATH = hf_hub_download( repo_id=model_config.DOWNLOAD_MODEL_REPO_ID, filename=model_config.DOWNLOAD_MODEL_FILE_NAME, local_dir=model_config.DOWNLOAD_MODEL_DIR, ) logger.info(f"Load Model - Path - {model_config.MODEL_FILE_PATH}") tmp_model = RWKV( model=model_config.DOWNLOAD_MODEL_FILE_NAME.replace(".pth", ""), strategy=CONFIG.STRATEGY, ) tmp_pipeline = PIPELINE(tmp_model, model_config.VOCAB) if model_config.DEFAULT: if model_config.REASONING: DEFAULT_REASONING_MODEL_NAME = model_config.SERVICE_NAME else: DEFALUT_MODEL_NAME = model_config.SERVICE_NAME MODEL_STORAGE[model_config.SERVICE_NAME] = ModelStorage() MODEL_STORAGE[model_config.SERVICE_NAME].MODEL_CONFIG = model_config MODEL_STORAGE[model_config.SERVICE_NAME].model = tmp_model MODEL_STORAGE[model_config.SERVICE_NAME].pipeline = tmp_pipeline logger.info(f"DEFALUT_MODEL_NAME is `{DEFALUT_MODEL_NAME}`") logger.info(f"DEFAULT_REASONING_MODEL_NAME is `{DEFAULT_REASONING_MODEL_NAME}`") class ChatCompletionRequest(BaseModel): model: str = Field( default="rwkv-latest", description="Add `:thinking` suffix to the model name to enable reasoning. Example: `rwkv-latest:thinking`", ) messages: Optional[List[ChatMessage]] = Field(default=None) prompt: Optional[str] = Field(default=None) max_tokens: Optional[int] = Field(default=None) temperature: Optional[float] = Field(default=None) top_p: Optional[float] = Field(default=None) presence_penalty: Optional[float] = Field(default=None) count_penalty: Optional[float] = Field(default=None) penalty_decay: Optional[float] = Field(default=None) stream: Optional[bool] = Field(default=False) state_name: Optional[str] = Field(default=None) include_usage: Optional[bool] = Field(default=False) stop: Optional[list[str]] = Field(["\n\n"]) @model_validator(mode="before") @classmethod def validate_mutual_exclusivity(cls, data: Any) -> Any: if not isinstance(data, dict): return data messages_provided = "messages" in data and data["messages"] != None prompt_provided = "prompt" in data and data["prompt"] != None if messages_provided and prompt_provided: raise ValueError("messages and prompt cannot coexist. Choose one.") if not messages_provided and not prompt_provided: raise ValueError("Either messages or prompt must be provided.") return data app = FastAPI(title="RWKV OpenAI-Compatible API") app.add_middleware( CORSMiddleware, allow_origins=["*"], allow_credentials=True, allow_methods=["*"], allow_headers=["*"], ) async def runPrefill( request: ChatCompletionRequest, ctx: str, model_tokens: List[int], model_state ): ctx = ctx.replace("\r\n", "\n") tokens = MODEL_STORAGE[request.model].pipeline.encode(ctx) tokens = [int(x) for x in tokens] model_tokens += tokens while len(tokens) > 0: out, model_state = MODEL_STORAGE[request.model].model.forward( tokens[: CONFIG.CHUNK_LEN], model_state ) tokens = tokens[CONFIG.CHUNK_LEN :] await asyncio.sleep(0) return out, model_tokens, model_state def generate( request: ChatCompletionRequest, out, model_tokens, model_state, stops=["\n\n"], max_tokens=2048, ): args = PIPELINE_ARGS( temperature=max(0.2, request.temperature), top_p=request.top_p, alpha_frequency=request.count_penalty, alpha_presence=request.presence_penalty, token_ban=[], # ban the generation of some tokens token_stop=[0], ) # stop generation whenever you see any token here occurrence = {} out_tokens = [] out_last = 0 output_cache = collections.deque(maxlen=5) for i in range(max_tokens): for n in occurrence: out[n] -= args.alpha_presence + occurrence[n] * args.alpha_frequency out[0] -= 1e10 # disable END_OF_TEXT token = MODEL_STORAGE[request.model].pipeline.sample_logits( out, temperature=args.temperature, top_p=args.top_p ) out, model_state = MODEL_STORAGE[request.model].model.forward( [token], model_state ) model_tokens += [token] out_tokens += [token] for xxx in occurrence: occurrence[xxx] *= request.penalty_decay occurrence[token] = 1 + (occurrence[token] if token in occurrence else 0) tmp: str = MODEL_STORAGE[request.model].pipeline.decode(out_tokens[out_last:]) if "\ufffd" in tmp: continue output_cache.append(tmp) output_cache_str = "".join(output_cache) for stop_words in stops: if stop_words in output_cache_str: yield { "content": tmp.replace(stop_words, ""), "tokens": out_tokens[out_last:], "finish_reason": "stop", "state": model_state, } del out gc.collect() return yield { "content": tmp, "tokens": out_tokens[out_last:], "finish_reason": None, } out_last = i + 1 else: yield { "content": "", "tokens": [], "finish_reason": "length", } async def chatResponse( request: ChatCompletionRequest, model_state: any, completionId: str, enableReasoning: bool, ) -> ChatCompletion: createTimestamp = time.time() prompt = ( f"{cleanMessages(request.messages)}\n\nAssistant:{' ", streamConfig["fullTextCursor"]) if streamConfig["isChecking"] and markEnd != -1: streamConfig["isChecking"] = False if ( not streamConfig["in_think"] and streamConfig["cacheStr"].find("") != -1 ): streamConfig["in_think"] = True response.choices[0].delta.reasoning_content = ( response.choices[0].delta.reasoning_content if response.choices[0].delta.reasoning_content != None else "" + streamConfig["cacheStr"].replace("", "") ) elif ( streamConfig["in_think"] and streamConfig["cacheStr"].find("") != -1 ): streamConfig["in_think"] = False response.choices[0].delta.content = ( response.choices[0].delta.content if response.choices[0].delta.content != None else "" + streamConfig["cacheStr"].replace("", "") ) else: if streamConfig["in_think"]: response.choices[0].delta.reasoning_content = ( response.choices[0].delta.reasoning_content if response.choices[0].delta.reasoning_content != None else "" + streamConfig["cacheStr"] ) else: response.choices[0].delta.content = ( response.choices[0].delta.content if response.choices[0].delta.content != None else "" + streamConfig["cacheStr"] ) streamConfig["fullTextCursor"] = len(fullText) if ( response.choices[0].delta.content != None or response.choices[0].delta.reasoning_content != None ): yield f"data: {response.model_dump_json()}\n\n" await asyncio.sleep(0) del streamConfig else: for chunk in generate(request, out, model_tokens, model_state): completionTokenCount += 1 buffer.append(chunk["content"]) if chunk["finish_reason"]: finishReason = chunk["finish_reason"] response = ChatCompletionChunk( id=completionId, created=createTimestamp, model=request.model, usage=( Usage( prompt_tokens=promptTokenCount, completion_tokens=completionTokenCount, total_tokens=promptTokenCount + completionTokenCount, prompt_tokens_details={"cached_tokens": 0}, ) if request.include_usage else None ), choices=[ ChatCompletionChoice( index=0, delta=ChatCompletionMessage(content=chunk["content"]), logprobs=None, finish_reason=finishReason, ) ], ) yield f"data: {response.model_dump_json()}\n\n" await asyncio.sleep(0) genenrateTime = time.time() responseLog = { "content": "".join(buffer), "finish": finishReason, "prefill_len": promptTokenCount, "prefill_tps": round(promptTokenCount / (prefillTime - createTimestamp), 2), "gen_len": completionTokenCount, "gen_tps": round(completionTokenCount / (genenrateTime - prefillTime), 2), } logger.info(f"[RES] {completionId} - {responseLog}") del buffer yield "data: [DONE]\n\n" @app.post("/api/v1/chat/completions") async def chat_completions(request: ChatCompletionRequest): completionId = str(next(CompletionIdGenerator)) logger.info(f"[REQ] {completionId} - {request.model_dump()}") modelName = request.model.split(":")[0] enableReasoning = ":thinking" in request.model if "rwkv-latest" in request.model: if enableReasoning: if DEFAULT_REASONING_MODEL_NAME == None: raise HTTPException(404, "DEFAULT_REASONING_MODEL_NAME not set") defaultSamplerConfig = MODEL_STORAGE[ DEFAULT_REASONING_MODEL_NAME ].MODEL_CONFIG.DEFAULT_SAMPLER request.model = DEFAULT_REASONING_MODEL_NAME else: if DEFALUT_MODEL_NAME == None: raise HTTPException(404, "DEFALUT_MODEL_NAME not set") defaultSamplerConfig = MODEL_STORAGE[ DEFALUT_MODEL_NAME ].MODEL_CONFIG.DEFAULT_SAMPLER request.model = DEFALUT_MODEL_NAME elif modelName in MODEL_STORAGE: defaultSamplerConfig = MODEL_STORAGE[modelName].MODEL_CONFIG.DEFAULT_SAMPLER request.model = modelName else: raise f"Can not find `{modelName}`" async def chatResponseStreamDisconnect(): if "cuda" in CONFIG.STRATEGY: gpu_info = nvmlDeviceGetMemoryInfo(gpu_h) logger.info( f"[STATUS] vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}" ) model_state = None request_dict = request.model_dump() for k, v in defaultSamplerConfig.model_dump().items(): if request_dict[k] == None: request_dict[k] = v realRequest = ChatCompletionRequest(**request_dict) logger.info(f"[REQ] {completionId} - Real - {request.model_dump()}") if request.stream: r = StreamingResponse( chatResponseStream(realRequest, model_state, completionId, enableReasoning), media_type="text/event-stream", background=chatResponseStreamDisconnect, ) else: r = await chatResponse(realRequest, model_state, completionId, enableReasoning) return r app.mount("/", StaticFiles(directory="dist-frontend", html=True), name="static") if __name__ == "__main__": import uvicorn uvicorn.run(app, host=CONFIG.HOST, port=CONFIG.PORT)