import torch import torch.nn.functional as F from torch import nn from einops import rearrange from .transformer_utils import BaseTemperalPointModel import math from einops_exts import check_shape, rearrange_many from functools import partial from rotary_embedding_torch import RotaryEmbedding def exists(x): return x is not None class SinusoidalPosEmb(nn.Module): def __init__(self, dim): super().__init__() self.dim = dim def forward(self, x): device = x.device half_dim = self.dim // 2 emb = math.log(10000) / (half_dim - 1) emb = torch.exp(torch.arange(half_dim, device=device) * -emb) emb = x[:, None] * emb[None, :] emb = torch.cat((emb.sin(), emb.cos()), dim=-1) return emb class RelativePositionBias(nn.Module): def __init__( self, heads = 8, num_buckets = 32, max_distance = 128 ): super().__init__() self.num_buckets = num_buckets self.max_distance = max_distance self.relative_attention_bias = nn.Embedding(num_buckets, heads) @staticmethod def _relative_position_bucket(relative_position, num_buckets = 32, max_distance = 128): ret = 0 n = -relative_position num_buckets //= 2 ret += (n < 0).long() * num_buckets n = torch.abs(n) max_exact = num_buckets // 2 is_small = n < max_exact val_if_large = max_exact + ( torch.log(n.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).long() val_if_large = torch.min(val_if_large, torch.full_like(val_if_large, num_buckets - 1)) ret += torch.where(is_small, n, val_if_large) return ret def forward(self, n, device): q_pos = torch.arange(n, dtype = torch.long, device = device) k_pos = torch.arange(n, dtype = torch.long, device = device) rel_pos = rearrange(k_pos, 'j -> 1 j') - rearrange(q_pos, 'i -> i 1') rp_bucket = self._relative_position_bucket(rel_pos, num_buckets = self.num_buckets, max_distance = self.max_distance) values = self.relative_attention_bias(rp_bucket) return rearrange(values, 'i j h -> h i j') class Residual(nn.Module): def __init__(self, fn): super().__init__() self.fn = fn def forward(self, x, *args, **kwargs): return self.fn(x, *args, **kwargs) + x class LayerNorm(nn.Module): def __init__(self, dim, eps = 1e-5): super().__init__() self.eps = eps self.gamma = nn.Parameter(torch.ones(1, 1, dim)) self.beta = nn.Parameter(torch.zeros(1, 1, dim)) def forward(self, x): var = torch.var(x, dim = -1, unbiased = False, keepdim = True) mean = torch.mean(x, dim = -1, keepdim = True) return (x - mean) / (var + self.eps).sqrt() * self.gamma + self.beta class PreNorm(nn.Module): def __init__(self, dim, fn): super().__init__() self.fn = fn self.norm = LayerNorm(dim) def forward(self, x, **kwargs): x = self.norm(x) return self.fn(x, **kwargs) class EinopsToAndFrom(nn.Module): def __init__(self, from_einops, to_einops, fn): super().__init__() self.from_einops = from_einops self.to_einops = to_einops self.fn = fn def forward(self, x, **kwargs): shape = x.shape reconstitute_kwargs = dict(tuple(zip(self.from_einops.split(' '), shape))) x = rearrange(x, f'{self.from_einops} -> {self.to_einops}') x = self.fn(x, **kwargs) x = rearrange(x, f'{self.to_einops} -> {self.from_einops}', **reconstitute_kwargs) return x class Attention(nn.Module): def __init__( self, dim, heads=4, attn_head_dim=None, casual_attn=False,rotary_emb = None): super().__init__() self.num_heads = heads head_dim = dim // heads self.casual_attn = casual_attn if attn_head_dim is not None: head_dim = attn_head_dim all_head_dim = head_dim * self.num_heads self.scale = head_dim ** -0.5 self.to_qkv = nn.Linear(dim, all_head_dim * 3, bias=False) self.proj = nn.Linear(all_head_dim, dim) self.rotary_emb = rotary_emb def forward(self, x, pos_bias = None): N, device = x.shape[-2], x.device qkv = self.to_qkv(x).chunk(3, dim = -1) q, k, v = rearrange_many(qkv, '... n (h d) -> ... h n d', h=self.num_heads) q = q * self.scale if exists(self.rotary_emb): q = self.rotary_emb.rotate_queries_or_keys(q) k = self.rotary_emb.rotate_queries_or_keys(k) sim = torch.einsum('... h i d, ... h j d -> ... h i j', q, k) if exists(pos_bias): sim = sim + pos_bias if self.casual_attn: mask = torch.tril(torch.ones(sim.size(-1), sim.size(-2))).to(device) sim = sim.masked_fill(mask[..., :, :] == 0, float('-inf')) attn = sim.softmax(dim = -1) x = torch.einsum('... h i j, ... h j d -> ... h i d', attn, v) x = rearrange(x, '... h n d -> ... n (h d)') x = self.proj(x) return x class Block(nn.Module): def __init__(self, dim, dim_out): super().__init__() self.proj = nn.Linear(dim, dim_out) self.norm = LayerNorm(dim) self.act = nn.SiLU() def forward(self, x, scale_shift=None): x = self.proj(x) if exists(scale_shift): x = self.norm(x) scale, shift = scale_shift x = x * (scale + 1) + shift return self.act(x) class ResnetBlock(nn.Module): def __init__(self, dim, dim_out, cond_dim=None): super().__init__() self.mlp = nn.Sequential( nn.SiLU(), nn.Linear(cond_dim, dim_out * 2) ) if exists(cond_dim) else None self.block1 = Block(dim, dim_out) self.block2 = Block(dim_out, dim_out) def forward(self, x, cond_emb=None): scale_shift = None if exists(self.mlp): assert exists(cond_emb), 'time emb must be passed in' cond_emb = self.mlp(cond_emb) #cond_emb = rearrange(cond_emb, 'b f c -> b f 1 c') scale_shift = cond_emb.chunk(2, dim=-1) h = self.block1(x, scale_shift=scale_shift) h = self.block2(h) return h + x class SimpleTransModel(BaseTemperalPointModel): """ A simple model that processes a point cloud by applying a series of MLPs to each point individually, along with some pooled global features. """ def get_layers(self): self.input_projection = nn.Linear( in_features=70, out_features=self.dim ) cond_dim = 512 + self.timestep_embed_dim num_head = self.dim//64 rotary_emb = RotaryEmbedding(min(32, num_head)) self.time_rel_pos_bias = RelativePositionBias(heads=num_head, max_distance=128) # realistically will not be able to generate that many frames of video... yet temporal_casual_attn = lambda dim: Attention(dim, heads=num_head, casual_attn=False,rotary_emb=rotary_emb) cond_block = partial(ResnetBlock, cond_dim=cond_dim) layers = nn.ModuleList([]) for _ in range(self.num_layers): layers.append(nn.ModuleList([ cond_block(self.dim, self.dim), cond_block(self.dim, self.dim), Residual(PreNorm(self.dim, temporal_casual_attn(self.dim))) ])) return layers def forward(self, inputs: torch.Tensor, timesteps: torch.Tensor, context=None): """ Apply the model to an input batch. :param x: an [N x C x ...] Tensor of inputs. :param timesteps: a 1-D batch of timesteps. :param context: conditioning plugged in via crossattn """ # Prepare inputs batch, num_frames, channels = inputs.size() device = inputs.device x = self.input_projection(inputs) t_emb = self.time_mlp(timesteps) if exists(self.time_mlp) else None t_emb = t_emb[:,None,:].expand(-1, num_frames, -1) # b f c if context is not None: t_emb = torch.cat([t_emb, context],-1) time_rel_pos_bias = self.time_rel_pos_bias(num_frames, device=device) for block1, block2, temporal_attn in self.layers: x = block1(x, t_emb) x = block2(x, t_emb) x = temporal_attn(x, pos_bias=time_rel_pos_bias) # Project x = self.output_projection(x) return x