from youtube_transcript_api import YouTubeTranscriptApi, TranscriptsDisabled, NoTranscriptFound, VideoUnavailable from urllib.parse import urlparse, parse_qs import gradio as gr from transformers import pipeline # Load Hugging Face summarization model text_summary = pipeline("summarization", model="sshleifer/distilbart-xsum-12-6") # Extract video ID from YouTube URL def get_video_id(youtube_url): query = urlparse(youtube_url) if query.hostname == 'youtu.be': return query.path[1:] elif query.hostname in ['www.youtube.com', 'youtube.com']: if query.path == '/watch': return parse_qs(query.query).get('v', [None])[0] elif query.path.startswith('/embed/') or query.path.startswith('/v/'): return query.path.split('/')[2] return None # Fetch transcript from video ID def fetch_transcript(video_url): video_id = get_video_id(video_url) if not video_id: return "❌ Invalid YouTube URL." try: transcript = YouTubeTranscriptApi.get_transcript(video_id) return " ".join([entry['text'] for entry in transcript]) except (NoTranscriptFound, TranscriptsDisabled, VideoUnavailable) as e: return f"❌ {str(e)}" except Exception: try: transcript_list = YouTubeTranscriptApi.list_transcripts(video_id) transcript = transcript_list.find_transcript(['en']) return " ".join([entry['text'] for entry in transcript.fetch()]) except Exception as e2: return f"❌ Error fetching transcript: {str(e2)}" # Split long text safely into small chunks def split_text(text, max_words=500): words = text.split() chunks = [] for i in range(0, len(words), max_words): chunk = " ".join(words[i:i+max_words]) chunks.append(chunk) return chunks # Main function: fetch + summarize any transcript length def summarize_youtube_video(url): transcript = fetch_transcript(url) if transcript.startswith("❌"): return transcript try: words = transcript.split() word_count = len(words) if word_count <= 500: summary = text_summary(transcript, max_length=150, min_length=60, do_sample=False) return summary[0]['summary_text'] chunks = split_text(transcript, max_words=500) partial_summaries = [] for chunk in chunks: summary = text_summary(chunk, max_length=150, min_length=60, do_sample=False) partial_summaries.append(summary[0]['summary_text']) combined_summary = " ".join(partial_summaries) # Final summary of all summaries final_summary = text_summary(combined_summary, max_length=200, min_length=80, do_sample=False) return final_summary[0]['summary_text'] except Exception as e: return f"❌ Error during summarization: {str(e)}" # Gradio UI gr.close_all() demo = gr.Interface( fn=summarize_youtube_video, inputs=gr.Textbox(label="Enter YouTube Video URL", lines=1, placeholder="https://youtu.be/..."), outputs=gr.Textbox(label="Video Summary", lines=10), title="@RosangenAi Project 2: YouTube Video Summarizer", description="Paste any YouTube video link. This app will fetch and summarize even long transcripts using Hugging Face models." ) demo.launch()