Spaces:
Running
Running
Commit
·
b74625d
1
Parent(s):
73b6c01
first commit
Browse files- LINEA +1 -0
- app.py +225 -0
- assets/example1.jpg +0 -0
- assets/example2.jpg +0 -0
- assets/example3.jpg +0 -0
- assets/example4.jpg +0 -0
- requirements.txt +6 -0
LINEA
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Subproject commit 12ac0a326ddb7ec9809bf7080a19c8509dcffe45
|
app.py
ADDED
@@ -0,0 +1,225 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
import torchvision.transforms as T
|
5 |
+
|
6 |
+
from LINEA.models import build_linea
|
7 |
+
from LINEA.util.slconfig import DictAction, SLConfig
|
8 |
+
|
9 |
+
from PIL import Image, ImageDraw
|
10 |
+
|
11 |
+
LINEA_MODELS = {
|
12 |
+
"LINEA-N": './LINEA/configs/linea/linea_hgnetv2_n.py',
|
13 |
+
"LINEA-S": './LINEA/configs/linea/linea_hgnetv2_s.py',
|
14 |
+
"LINEA-M": './LINEA/configs/linea/linea_hgnetv2_m.py',
|
15 |
+
"LINEA-L": './LINEA/configs/linea/linea_hgnetv2_l.py'
|
16 |
+
}
|
17 |
+
|
18 |
+
transforms = T.Compose(
|
19 |
+
[
|
20 |
+
T.Resize((640, 640)),
|
21 |
+
T.ToTensor(),
|
22 |
+
T.Normalize(mean=[0.538, 0.494, 0.453], std=[0.257, 0.263, 0.273]),
|
23 |
+
]
|
24 |
+
)
|
25 |
+
|
26 |
+
example_images = [
|
27 |
+
["assets/example1.jpg"],
|
28 |
+
["assets/example2.jpg"],
|
29 |
+
["assets/example3.jpg"],
|
30 |
+
["assets/example4.jpg"],
|
31 |
+
]
|
32 |
+
|
33 |
+
description = """
|
34 |
+
<h1 align="center">
|
35 |
+
<ins>LINEA</ins>
|
36 |
+
<br>
|
37 |
+
Fast and accurate line detection using scalable transformers
|
38 |
+
</h1>
|
39 |
+
|
40 |
+
<h2 align="center">
|
41 |
+
<a href="https://www.linkedin.com/in/sebastianjr/">Sebastian Janampa</a>
|
42 |
+
and
|
43 |
+
<a href="https://www.linkedin.com/in/marios-pattichis-207b0119/">Marios Pattichis</a>
|
44 |
+
</h2>
|
45 |
+
|
46 |
+
<h2 align="center">
|
47 |
+
<a href="https://github.com/SebastianJanampa/LINEA.git">GitHub</a> |
|
48 |
+
<a href="https://colab.research.google.com/github/SebastianJanampa/LINEA/blob/master/LINEA_tutorial.ipynb">Colab</a>
|
49 |
+
</h2>
|
50 |
+
|
51 |
+
|
52 |
+
## Getting Started
|
53 |
+
|
54 |
+
LINEA is a family of transformers models that detectes the line segments on an image.
|
55 |
+
Its key component is its new attention mechanism called **line attention**.
|
56 |
+
|
57 |
+
To get started, upload an image or select one of the examples below.
|
58 |
+
You can choose between different model size, change the confidence threshold and visualize the results.
|
59 |
+
"""
|
60 |
+
|
61 |
+
def create_model(model_size):
|
62 |
+
cfg = SLConfig.fromfile(LINEA_MODELS[model_size])
|
63 |
+
cfg.pretrained = False
|
64 |
+
|
65 |
+
model, postprocessor = build_linea(cfg)
|
66 |
+
|
67 |
+
letter = model_size[-1].lower()
|
68 |
+
url = f"https://github.com/SebastianJanampa/storage/releases/download/LINEA/linea_hgnetv2_{letter}.pth"
|
69 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
70 |
+
url, map_location="cpu", file_name=f"linea_hgnetv2_{letter}.pth"
|
71 |
+
)
|
72 |
+
|
73 |
+
model.load_state_dict(state_dict['model'], strict=True)
|
74 |
+
|
75 |
+
class Model(nn.Module):
|
76 |
+
def __init__(self):
|
77 |
+
super().__init__()
|
78 |
+
self.model = model.deploy()
|
79 |
+
self.postprocessor = postprocessor.deploy()
|
80 |
+
|
81 |
+
def forward(self, images, orig_target_sizes):
|
82 |
+
outputs = self.model(images)
|
83 |
+
outputs = self.postprocessor(outputs, orig_target_sizes)
|
84 |
+
return outputs
|
85 |
+
|
86 |
+
model = Model()
|
87 |
+
model.eval()
|
88 |
+
|
89 |
+
return model
|
90 |
+
|
91 |
+
def draw(images, lines, scores, thrh):
|
92 |
+
for i, im in enumerate(images):
|
93 |
+
draw = ImageDraw.Draw(im)
|
94 |
+
|
95 |
+
scr = scores[i]
|
96 |
+
line = lines[i][scr > thrh]
|
97 |
+
scrs = scr[scr > thrh]
|
98 |
+
|
99 |
+
for j, l in enumerate(line):
|
100 |
+
draw.line(list(l), fill="red", width=5)
|
101 |
+
draw.text(
|
102 |
+
(l[0], l[1]),
|
103 |
+
text=f"{round(scrs[j].item(), 2)}",
|
104 |
+
fill="blue",
|
105 |
+
)
|
106 |
+
|
107 |
+
return images
|
108 |
+
|
109 |
+
def filter(lines, scores, threshold):
|
110 |
+
filtered_lines, filter_scores = [], []
|
111 |
+
for line, scr in zip(lines, scores):
|
112 |
+
idx = scr > threshold
|
113 |
+
filtered_lines.append(line[idx])
|
114 |
+
filter_scores.append(scr[idx])
|
115 |
+
return filtered_lines, filter_scores
|
116 |
+
|
117 |
+
def format_output(lines, scores):
|
118 |
+
n = len(lines[0])
|
119 |
+
|
120 |
+
txt = f"{n} lines were detected\n"
|
121 |
+
txt += "Detected lines:\n"
|
122 |
+
for line, scr in zip(lines[0], scores[0]):
|
123 |
+
txt += f"\tx1: {line[0].item():.2f}"
|
124 |
+
txt += f"\ty1: {line[0].item():.2f}"
|
125 |
+
txt += f"\tx2: {line[0].item():.2f}"
|
126 |
+
txt += f"\ty2: {line[0].item():.2f}"
|
127 |
+
txt += f"\tscore: {scr.item():.2f}\n"
|
128 |
+
return txt
|
129 |
+
|
130 |
+
def process_results(
|
131 |
+
image_path,
|
132 |
+
model_size,
|
133 |
+
threshold
|
134 |
+
):
|
135 |
+
""" Process the image an returns the detected lines """
|
136 |
+
if image_path is None:
|
137 |
+
raise gr.Error("Please upload an image first.")
|
138 |
+
|
139 |
+
model = create_model(model_size)
|
140 |
+
|
141 |
+
im_pil = Image.open(image_path).convert("RGB")
|
142 |
+
w, h = im_pil.size
|
143 |
+
orig_size = torch.tensor([[w, h]])
|
144 |
+
|
145 |
+
im_data = transforms(im_pil).unsqueeze(0)
|
146 |
+
|
147 |
+
output = model(im_data, orig_size)
|
148 |
+
lines, scores = output
|
149 |
+
|
150 |
+
result_images = draw([im_pil], lines, scores, thrh=threshold)
|
151 |
+
filtered_lines, filtered_scores = filter(lines, scores, threshold)
|
152 |
+
|
153 |
+
return format_output(filtered_lines, filtered_scores), result_images[0], (lines, scores)
|
154 |
+
|
155 |
+
def update_threshold(
|
156 |
+
image_path,
|
157 |
+
raw_results,
|
158 |
+
threshold
|
159 |
+
):
|
160 |
+
lines, scores = raw_results
|
161 |
+
im_pil = Image.open(image_path).convert("RGB")
|
162 |
+
|
163 |
+
result_images = draw([im_pil], lines, scores, thrh=threshold)
|
164 |
+
filtered_lines, filtered_scores = filter(lines, scores, threshold)
|
165 |
+
return format_output(filtered_lines, filtered_scores), result_images[0]
|
166 |
+
|
167 |
+
def update_model(
|
168 |
+
image_path,
|
169 |
+
model_size,
|
170 |
+
threshold
|
171 |
+
):
|
172 |
+
create_model(model_size)
|
173 |
+
|
174 |
+
if image_path is None:
|
175 |
+
raise gr.Error("Please upload an image first.")
|
176 |
+
return None, None, None
|
177 |
+
|
178 |
+
return process_results(image_path, model_size, threshold)
|
179 |
+
|
180 |
+
|
181 |
+
# Create the Gradio interface
|
182 |
+
with gr.Blocks() as demo:
|
183 |
+
gr.Markdown(description)
|
184 |
+
with gr.Row():
|
185 |
+
with gr.Column():
|
186 |
+
gr.Markdown("""## Input Image""")
|
187 |
+
image_path = gr.Image(label="Upload image", type="filepath")
|
188 |
+
model_size = gr.Dropdown(
|
189 |
+
choices=list(LINEA_MODELS.keys()), label="Choose a LINEA model.", value="LINEA-M"
|
190 |
+
)
|
191 |
+
threshold = gr.Slider(
|
192 |
+
label="Confidence Threshold",
|
193 |
+
minimum=0.0,
|
194 |
+
maximum=1.0,
|
195 |
+
step=0.05,
|
196 |
+
interactive=True,
|
197 |
+
value=0.30,
|
198 |
+
)
|
199 |
+
|
200 |
+
submit_btn = gr.Button("Detect Lines")
|
201 |
+
gr.Examples(examples=example_images, inputs=[image_path, model_size])
|
202 |
+
|
203 |
+
with gr.Column():
|
204 |
+
gr.Markdown("""## Results""")
|
205 |
+
image_output = gr.Image(label="Detected Lines")
|
206 |
+
|
207 |
+
text_output = gr.Textbox(label="Predicted lines", type="text", lines=5)
|
208 |
+
|
209 |
+
# Define the action when the button is clicked
|
210 |
+
raw_results = gr.State()
|
211 |
+
|
212 |
+
plot_inputs = [
|
213 |
+
raw_results,
|
214 |
+
threshold
|
215 |
+
]
|
216 |
+
|
217 |
+
submit_btn.click(
|
218 |
+
fn=process_results,
|
219 |
+
inputs=[image_path, model_size] + plot_inputs[1:],
|
220 |
+
outputs=[text_output, image_output, raw_results],
|
221 |
+
)
|
222 |
+
|
223 |
+
# Define the action when the plot checkboxes are clicked
|
224 |
+
threshold.change(fn=update_threshold, inputs=[image_path] + plot_inputs, outputs=[text_output, image_output])
|
225 |
+
demo.launch()
|
assets/example1.jpg
ADDED
![]() |
assets/example2.jpg
ADDED
![]() |
assets/example3.jpg
ADDED
![]() |
assets/example4.jpg
ADDED
![]() |
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch>=2.0.1
|
2 |
+
torchvision>=0.15.2
|
3 |
+
transformers
|
4 |
+
yapf
|
5 |
+
addict
|
6 |
+
scipy
|