from fastapi import FastAPI, Request from fastapi.responses import HTMLResponse, PlainTextResponse from fastapi.staticfiles import StaticFiles from fastapi.templating import Jinja2Templates import uvicorn from transformers import pipeline app = FastAPI() app.mount("/static", StaticFiles(directory="static"), name="static") templates = Jinja2Templates(directory="") @app.get("/", response_class=HTMLResponse) async def read_item(request: Request): return templates.TemplateResponse("index.html", context={'request': request}) @app.get("/{content}", response_class=PlainTextResponse) async def read_item(request: Request, content: str): return analyze_output(content) @app.post("/{content}", response_class=PlainTextResponse) async def read_item(request: Request, content: str): return analyze_output(content) def analyze_output(input: str, pipe = pipeline("text-classification", model="Titeiiko/OTIS-Official-Spam-Model")): x = pipe(input)[0] if x["label"] == "LABEL_0": return str({"type":"Not Spam", "probability":x["score"]}) else: return str({"type":"Spam", "probability":x["score"]}) if __name__ == "__main__": uvicorn.run(app, host="0.0.0.0", port=8000)