Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import random
|
2 |
import os
|
3 |
import uuid
|
@@ -8,6 +9,14 @@ import spaces
|
|
8 |
import torch
|
9 |
from diffusers import DiffusionPipeline
|
10 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
# Temporary fix to patch the gradio_client.utils module
|
13 |
import gradio_client.utils
|
@@ -25,13 +34,37 @@ SAVE_DIR = "saved_images" # Gradio will handle the persistence
|
|
25 |
if not os.path.exists(SAVE_DIR):
|
26 |
os.makedirs(SAVE_DIR, exist_ok=True)
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
|
32 |
-
|
33 |
-
|
34 |
-
pipeline =
|
35 |
|
36 |
MAX_SEED = np.iinfo(np.int32).max
|
37 |
MAX_IMAGE_SIZE = 1024
|
@@ -233,5 +266,12 @@ with gr.Blocks(theme="Yntec/HaleyCH_Theme_Orange", css=css, analytics_enabled=Fa
|
|
233 |
outputs=[result, seed, generated_gallery],
|
234 |
)
|
235 |
|
|
|
236 |
demo.queue()
|
237 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
|
2 |
import random
|
3 |
import os
|
4 |
import uuid
|
|
|
9 |
import torch
|
10 |
from diffusers import DiffusionPipeline
|
11 |
from PIL import Image
|
12 |
+
import huggingface_hub
|
13 |
+
import requests
|
14 |
+
from tqdm.auto import tqdm
|
15 |
+
import time
|
16 |
+
|
17 |
+
# νμμμ κ° μ¦κ° μ€μ
|
18 |
+
huggingface_hub.constants.DEFAULT_ETAG_TIMEOUT = 30
|
19 |
+
huggingface_hub.constants.DEFAULT_DOWNLOAD_TIMEOUT = 120
|
20 |
|
21 |
# Temporary fix to patch the gradio_client.utils module
|
22 |
import gradio_client.utils
|
|
|
34 |
if not os.path.exists(SAVE_DIR):
|
35 |
os.makedirs(SAVE_DIR, exist_ok=True)
|
36 |
|
37 |
+
# λͺ¨λΈ λ‘λ© ν¨μ - μ¬μλ λ‘μ§ μΆκ°
|
38 |
+
def load_model_with_retry(max_retries=5):
|
39 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
40 |
+
repo_id = "black-forest-labs/FLUX.1-dev"
|
41 |
+
adapter_id = "openfree/flux-chatgpt-ghibli-lora"
|
42 |
+
|
43 |
+
for attempt in range(max_retries):
|
44 |
+
try:
|
45 |
+
print(f"Loading model attempt {attempt+1}/{max_retries}...")
|
46 |
+
pipeline = DiffusionPipeline.from_pretrained(
|
47 |
+
repo_id,
|
48 |
+
torch_dtype=torch.bfloat16,
|
49 |
+
use_safetensors=True,
|
50 |
+
resume_download=True
|
51 |
+
)
|
52 |
+
print("Model loaded successfully, loading LoRA weights...")
|
53 |
+
pipeline.load_lora_weights(adapter_id)
|
54 |
+
pipeline = pipeline.to(device)
|
55 |
+
print("Pipeline ready!")
|
56 |
+
return pipeline, device
|
57 |
+
except (requests.exceptions.ReadTimeout, requests.exceptions.ConnectionError) as e:
|
58 |
+
if attempt < max_retries - 1:
|
59 |
+
wait_time = 10 * (attempt + 1) # μ μ§μ μΌλ‘ λκΈ° μκ° μ¦κ°
|
60 |
+
print(f"Download timed out or connection error: {e}. Retrying in {wait_time} seconds...")
|
61 |
+
time.sleep(wait_time)
|
62 |
+
else:
|
63 |
+
raise Exception(f"Failed to download model after {max_retries} attempts: {e}")
|
64 |
|
65 |
+
# λͺ¨λΈ λ‘λ μμ
|
66 |
+
print("Starting model loading process...")
|
67 |
+
pipeline, device = load_model_with_retry()
|
68 |
|
69 |
MAX_SEED = np.iinfo(np.int32).max
|
70 |
MAX_IMAGE_SIZE = 1024
|
|
|
266 |
outputs=[result, seed, generated_gallery],
|
267 |
)
|
268 |
|
269 |
+
# Launch with explicit host and port
|
270 |
demo.queue()
|
271 |
+
try:
|
272 |
+
demo.launch(share=False)
|
273 |
+
except Exception as e:
|
274 |
+
print(f"Error during launch: {e}")
|
275 |
+
# μλ¬ λ°μ μ, κ°μνλ λ²μ μΌλ‘ μ¬μλ
|
276 |
+
print("Retrying with simplified launch...")
|
277 |
+
demo.launch(share=False, ssl_verify=False)
|