Spaces:
Runtime error
Runtime error
tuned better
Browse files
app.py
CHANGED
@@ -9,9 +9,9 @@ import nltk
|
|
9 |
nltk.download('all')
|
10 |
import string
|
11 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
|
12 |
# import fastai
|
13 |
|
14 |
-
|
15 |
def similarity(input, joke):
|
16 |
return cosine_similarity(input, joke)
|
17 |
|
@@ -74,21 +74,22 @@ def LemNormalize(text):
|
|
74 |
return LemTokens(nltk.word_tokenize(text.lower().translate(remove_punct_dict)))
|
75 |
|
76 |
def NLTK(input):
|
77 |
-
f = open('corpus.txt', errors='strict')
|
78 |
data = f.read()
|
79 |
data = data.lower()
|
|
|
80 |
sent_tokens = nltk.sent_tokenize(data)
|
81 |
-
return bot(sent_tokens)
|
82 |
|
83 |
-
def bot(sent_tokens):
|
84 |
robo1_response = ''
|
85 |
TfidfVec = TfidfVectorizer(tokenizer = LemNormalize, stop_words='english')
|
86 |
tfidf = TfidfVec.fit_transform(sent_tokens)
|
87 |
vals = cosine_similarity(tfidf[-1], tfidf)
|
88 |
-
idx = vals.argsort()[0]
|
89 |
flat = vals.flatten()
|
90 |
flat.sort()
|
91 |
-
req_tfidf = flat[-
|
92 |
if (req_tfidf == 0):
|
93 |
robo1_response= robo1_response+"I could not answer this right now but you can contact the head of our dept (PUSPHA RAJ)." # add the dept recommendation engine and contact details
|
94 |
return robo1_response
|
|
|
9 |
nltk.download('all')
|
10 |
import string
|
11 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
12 |
+
import random
|
13 |
# import fastai
|
14 |
|
|
|
15 |
def similarity(input, joke):
|
16 |
return cosine_similarity(input, joke)
|
17 |
|
|
|
74 |
return LemTokens(nltk.word_tokenize(text.lower().translate(remove_punct_dict)))
|
75 |
|
76 |
def NLTK(input):
|
77 |
+
f = open('/content/corpus.txt', errors='strict')
|
78 |
data = f.read()
|
79 |
data = data.lower()
|
80 |
+
data = data + input.lower()
|
81 |
sent_tokens = nltk.sent_tokenize(data)
|
82 |
+
return bot(sent_tokens, input)
|
83 |
|
84 |
+
def bot(sent_tokens, input):
|
85 |
robo1_response = ''
|
86 |
TfidfVec = TfidfVectorizer(tokenizer = LemNormalize, stop_words='english')
|
87 |
tfidf = TfidfVec.fit_transform(sent_tokens)
|
88 |
vals = cosine_similarity(tfidf[-1], tfidf)
|
89 |
+
idx = random.randint(0, len(vals.argsort()[0]))
|
90 |
flat = vals.flatten()
|
91 |
flat.sort()
|
92 |
+
req_tfidf = flat[-5]
|
93 |
if (req_tfidf == 0):
|
94 |
robo1_response= robo1_response+"I could not answer this right now but you can contact the head of our dept (PUSPHA RAJ)." # add the dept recommendation engine and contact details
|
95 |
return robo1_response
|