Spaces:
Runtime error
Runtime error
File size: 1,068 Bytes
84d64bf 5c7fb6f b8c5d04 84d64bf d5e9814 84d64bf d5e9814 84d64bf b8c5d04 84d64bf d5e9814 84d64bf d5e9814 84d64bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 |
from fastapi import FastAPI
from pydantic import BaseModel
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM
# Initialisera modellen och tokenizern
model_name = "AI-Sweden-Models/gpt-sw3-126m-instruct"
device = "cuda:0" if torch.cuda.is_available() else "cpu"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForCausalLM.from_pretrained(model_name)
model.to(device)
model.eval()
# FastAPI-applikationen
app = FastAPI()
class UserInput(BaseModel):
prompt: str
@app.post("/generate/")
async def generate_response(user_input: UserInput):
prompt = f"<|endoftext|><s>\nUser:\n{user_input.prompt}\n<s>\nBot:"
input_ids = tokenizer(prompt, return_tensors="pt")["input_ids"].to(device)
generated_token_ids = model.generate(
inputs=input_ids,
max_new_tokens=100,
do_sample=True,
temperature=0.6,
top_p=1
)[0]
generated_text = tokenizer.decode(generated_token_ids[len(input_ids[0]):-1], skip_special_tokens=True)
return {"response": generated_text.strip()}
|