File size: 1,972 Bytes
55c2b1c
 
 
 
 
 
 
 
09e7c75
 
 
02109df
ddd1c14
09e7c75
02109df
a043943
09e7c75
a043943
02109df
 
09e7c75
 
3a73bc7
09e7c75
 
 
 
a064439
09e7c75
 
 
55c2b1c
 
 
 
 
 
 
3a73bc7
09e7c75
 
 
a064439
3a73bc7
09e7c75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
# VideoGrain: Modulating Space-Time Attention for Multi-Grained Video Editing (ICLR 2025)
## [<a href="https://knightyxp.github.io/VideoGrain_project_page/" target="_blank">Project Page</a>]

[![arXiv](https://img.shields.io/badge/arXiv-TokenFlow-b31b1b.svg)](https://arxiv.org/abs/) 
[![Hugging Face Spaces](https://img.shields.io/badge/%F0%9F%A4%97%20Hugging%20Face-Spaces-blue)](https://huggingface.co/spaces/)
[![Project page](https://img.shields.io/badge/Project-Page-brightgreen)](https://mc-e.github.io/project/ReVideo/)

## ▢️ Setup Environment
Our method is tested using cuda12.1, fp16 of accelerator and xformers on a single L40.

```bash
# Step 1: Create and activate Conda environment
conda create -n st-modulator python==3.10 
conda activate st-modulator

# Step 2: Install PyTorch, CUDA and Xformers
conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=12.1 -c pytorch -c nvidia
pip install --pre -U xformers==0.0.27
# Step 3: Install additional dependencies with pip
pip install -r requirements.txt
```

`xformers` is recommended to save memory and running time. 

</details>

You may download all data and checkpoints using the following bash command
```bash
bash download_all.sh
```

## πŸ”› Prepare all the data

```
gdown https://drive.google.com/file/d/1dzdvLnXWeMFR3CE2Ew0Bs06vyFSvnGXA/view?usp=drive_link
tar -zxvf videograin_data.tar.gz
```

## πŸ”₯ ST-Modulator Editing

You could reproduce multi-grained editing results in our teaser by running:

```bash
bash test.sh 
#or accelerate launch test.py --config config/run_two_man.yaml
```

<details><summary>The result is saved at `./result` . (Click for directory structure) </summary>

```
result
β”œβ”€β”€ run_two_man
β”‚   β”œβ”€β”€ infer_samples
β”‚   β”œβ”€β”€ sample
β”‚           β”œβ”€β”€ step_0         # result image folder
β”‚           β”œβ”€β”€ step_0.mp4       # result video
β”‚           β”œβ”€β”€ source_video.mp4    # the input video

```

</details>