# VideoGrain: Modulating Space-Time Attention for Multi-Grained Video Editing (ICLR 2025) ## [Project Page] [![arXiv](https://img.shields.io/badge/arXiv-2502.17258-B31B1B.svg)](https://arxiv.org/abs/2502.17258) [![HuggingFace Daily Papers Top1](https://img.shields.io/static/v1?label=HuggingFace%20Daily%20Papers&message=Top1&color=blue)](https://huggingface.co/papers/2502.17258) [![Project page](https://img.shields.io/badge/Project-Page-brightgreen)](https://knightyxp.github.io/VideoGrain_project_page/) ![visitors](https://visitor-badge.laobi.icu/badge?page_id=knightyxp.VideoGrain&left_color=green&right_color=red) [![Demo Video - VideoGrain](https://img.shields.io/badge/Demo_Video-VideoGrain-red)](https://youtu.be/JKDLet618hU)
class level instance level part level animal instances
animal instances human instances part-level modification
## πŸ“€ Demo Video https://github.com/user-attachments/assets/dc54bc11-48cc-4814-9879-bf2699ee9d1d ## πŸ“£ News * **[2025/2/25]** Our VideoGrain is posted and recommended by Gradio on [LinkedIn](https://www.linkedin.com/posts/gradio_just-dropped-videograin-a-new-zero-shot-activity-7300094635094261760-hoiE) and [Twitter](https://x.com/Gradio/status/1894328911154028566), and recommended by [AK](https://x.com/_akhaliq/status/1894254599223017622). * **[2025/2/25]** Our VideoGrain is submited by AK to [HuggingFace-daily papers](https://huggingface.co/papers?date=2025-02-25), and rank [#1](https://huggingface.co/papers/2502.17258) paper of that day. * **[2025/2/24]** We release our paper on [arxiv](https://arxiv.org/abs/2502.17258), we also release [code](https://github.com/knightyxp/VideoGrain) and [full-data](https://drive.google.com/file/d/1dzdvLnXWeMFR3CE2Ew0Bs06vyFSvnGXA/view?usp=drive_link) on google drive. * **[2025/1/23]** Our paper is accepted to [ICLR2025](https://openreview.net/forum?id=SSslAtcPB6)! Welcome to **watch** πŸ‘€ this repository for the latest updates. ## 🍻 Setup Environment Our method is tested using cuda12.1, fp16 of accelerator and xformers on a single L40. ```bash # Step 1: Create and activate Conda environment conda create -n videograin python==3.10 conda activate videograin # Step 2: Install PyTorch, CUDA and Xformers conda install pytorch==2.3.1 torchvision==0.18.1 torchaudio==2.3.1 pytorch-cuda=12.1 -c pytorch -c nvidia pip install --pre -U xformers==0.0.27 # Step 3: Install additional dependencies with pip pip install -r requirements.txt ``` `xformers` is recommended to save memory and running time. You may download all the base model checkpoints using the following bash command ```bash ## download sd 1.5, controlnet depth/pose v10/v11 bash download_all.sh ```
Click for ControlNet annotator weights (if you can not access to huggingface) You can download all the annotator checkpoints (such as DW-Pose, depth_zoe, depth_midas, and OpenPose, cost around 4G) from [baidu](https://pan.baidu.com/s/1sgBFLFkdTCDTn4oqHjGb9A?pwd=pdm5) or [google](https://drive.google.com/file/d/1qOsmWshnFMMr8x1HteaTViTSQLh_4rle/view?usp=drive_link) Then extract them into ./annotator/ckpts
## πŸ”› Prepare all the data ``` gdown https://drive.google.com/file/d/1dzdvLnXWeMFR3CE2Ew0Bs06vyFSvnGXA/view?usp=drive_link tar -zxvf videograin_data.tar.gz ``` ## πŸ”₯ VideoGrain Editing ### Inference VideoGrain is a training-free framework. To run the inference script, use the following command: ```bash bash test.sh or accelerate launch test.py --config config/part_level/adding_new_object/run_two_man/running_spider_polar_sunglass.yaml ```
The result is saved at `./result` . (Click for directory structure) ``` result β”œβ”€β”€ run_two_man β”‚ β”œβ”€β”€ control # control conditon β”‚ β”œβ”€β”€ infer_samples β”‚ β”œβ”€β”€ input # the input video frames β”‚ β”œβ”€β”€ masked_video.mp4 # check whether edit regions are accuratedly covered β”‚ β”œβ”€β”€ sample β”‚ β”œβ”€β”€ step_0 # result image folder β”‚ β”œβ”€β”€ step_0.mp4 # result video β”‚ β”œβ”€β”€ source_video.mp4 # the input video β”‚ β”œβ”€β”€ visualization_denoise # cross attention weight β”‚ β”œβ”€β”€ sd_study # cluster inversion feature ```
## ✏️ Citation If you think this project is helpful, please feel free to leave a star⭐️⭐️⭐️ and cite our paper: ```bibtex @article{yang2025videograin, title={VideoGrain: Modulating Space-Time Attention for Multi-grained Video Editing}, author={Yang, Xiangpeng and Zhu, Linchao and Fan, Hehe and Yang, Yi}, journal={arXiv preprint arXiv:2502.17258}, year={2025} } ``` ## πŸ“ž Contact Authors Xiangpeng Yang [@knightyxp](https://github.com/knightyxp), email: knightyxp@gmail.com/Xiangpeng.Yang@student.uts.edu.au ## ✨ Acknowledgements - This code builds on [diffusers](https://github.com/huggingface/diffusers), and [FateZero](https://github.com/ChenyangQiQi/FateZero). Thanks for open-sourcing! - We would like to thank [AK(@_akhaliq)](https://x.com/_akhaliq/status/1894254599223017622) and Gradio team for recommendation! ## ⭐️ Star History [![Star History Chart](https://api.star-history.com/svg?repos=knightyxp/VideoGrain&type=Date)](https://star-history.com/#knightyxp/VideoGrain&Date)