import torch from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig MODEL_NAME = 'HuggingFaceH4/zephyr-7b-beta' cached_model = None cached_tokenizer = None def load_model(): global cached_model, cached_tokenizer if cached_model is None or cached_tokenizer is None: bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) cached_model = AutoModelForCausalLM.from_pretrained(MODEL_NAME, quantization_config=bnb_config) cached_tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME) return cached_model, cached_tokenizer