Commit
·
a3555b5
1
Parent(s):
d4bc7b9
Added YOLO models
Browse files- M-Raw.pt +3 -0
- N-Raw.pt +3 -0
- S-Raw.pt +3 -0
- app.py +47 -0
- requirements.txt +4 -0
M-Raw.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d15f95658f7423ece0c2da12a9c4378348cf5e42deb081c24839c71d4e6dd1ca
|
3 |
+
size 52099424
|
N-Raw.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b35531393fe68c6f8d65bfc4d7ce909f2033f106a1ea3fd37c13db9d2086fa62
|
3 |
+
size 22557880
|
S-Raw.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:650137978f3688b85c43964630250da9ff479df21d52e91ba26e43334164ac3b
|
3 |
+
size 22557944
|
app.py
ADDED
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
from PIL import Image
|
3 |
+
import gradio as gr
|
4 |
+
from ultralytics import YOLO
|
5 |
+
|
6 |
+
# Load the YOLO model
|
7 |
+
m_raw_model = YOLO("M-Raw.pt")
|
8 |
+
n_raw_model = YOLO("N-Raw.pt")
|
9 |
+
s_raw_model = YOLO("S-Raw.pt")
|
10 |
+
|
11 |
+
def snap(image, model, conf):
|
12 |
+
# Convert the image to a numpy array
|
13 |
+
image = np.array(image)
|
14 |
+
|
15 |
+
# Run the selected model
|
16 |
+
results = None
|
17 |
+
if model == "M-Raw":
|
18 |
+
results = m_raw_model(image, conf=conf)
|
19 |
+
elif model == "N-Raw":
|
20 |
+
results = n_raw_model(image, conf=conf)
|
21 |
+
elif model == "S-Raw":
|
22 |
+
results = s_raw_model(image, conf=conf)
|
23 |
+
|
24 |
+
# Draw the bounding boxes
|
25 |
+
resulting_image = results.render()
|
26 |
+
|
27 |
+
# Convert the resulting image to a PIL image
|
28 |
+
resulting_image = Image.fromarray(resulting_image)
|
29 |
+
|
30 |
+
# Get the labels
|
31 |
+
labels = results.pandas().xyxy[0]["name"].values
|
32 |
+
|
33 |
+
# Sort the labels by their x-value
|
34 |
+
labels = labels[np.argsort(results.pandas().xyxy[0]["x"].values)]
|
35 |
+
|
36 |
+
return [resulting_image, labels]
|
37 |
+
|
38 |
+
|
39 |
+
demo = gr.Interface(
|
40 |
+
snap,
|
41 |
+
[gr.Image(source="webcam", tool=None, streaming=True), gr.inputs.Radio(["M-Raw", "N-Raw", "S-Raw"]), gr.inputs.Slider(0.0, 1.0, 0.5, 0.1, "Confidence")],
|
42 |
+
["image", "labels"],
|
43 |
+
title="Baybayin Instance Detection"
|
44 |
+
)
|
45 |
+
|
46 |
+
if __name__ == "__main__":
|
47 |
+
demo.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
numpy
|
2 |
+
Pillow
|
3 |
+
ultralytics
|
4 |
+
gradio
|