import numpy as np from PIL import Image import gradio as gr from ultralytics import YOLO from ultralytics.yolo.utils.ops import scale_image import cv2 # Load the YOLO model m_raw_model = YOLO("M-Raw.pt") n_raw_model = YOLO("N-Raw.pt") s_raw_model = YOLO("S-Raw.pt") def snap(image, model, conf, iou): # Run the selected model results = None if model == "M-Raw": results = m_raw_model(image, conf=conf, iou=iou) elif model == "N-Raw": results = n_raw_model(image, conf=conf, iou=iou) elif model == "S-Raw": results = s_raw_model(image, conf=conf, iou=iou) # Convert the results list into an output image result = results[0] if result.boxes.cls.cpu().numpy().size == 0: return [image] classes = result.boxes.cls.cpu().numpy()[0] probs = result.boxes.conf.cpu().numpy()[0] boxes = result.boxes.xyxy.cpu().numpy() print("-------------------") print(classes) print("-------------------") print(probs) print("-------------------") print(boxes) print(image) for i in range(len(boxes)): x1, y1, x2, y2 = boxes[i] x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2) cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2) cv2.putText(image, f"{classes} {probs:.2f}", (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2) # Convert the resulting image to a PIL image resulting_image = image # Get the labels # labels = results.pandas().xyxy[0]["name"].values # Sort the labels by their x-value first and then by their y-value # print(labels) return [resulting_image] demo = gr.Interface( snap, [gr.Image(source="webcam", tool=None, streaming=True), gr.Radio(["M-Raw", "S-Raw", "N-Raw"]), gr.Slider(0, 1, value=0.6, label="Classifier Confidence Threshold"), gr.Slider(0, 1, value=0.7, label="IoU Threshold")], ["image"], title="Baybayin Instance Detection" ) if __name__ == "__main__": demo.launch()