import numpy as np from PIL import Image import gradio as gr from ultralytics import YOLO # Load the YOLO model m_raw_model = YOLO("M-Raw.pt") n_raw_model = YOLO("N-Raw.pt") s_raw_model = YOLO("S-Raw.pt") def snap(image, model, conf, iou): # Convert the image to a numpy array image = np.array(image) # Run the selected model results = None if model == "M-Raw": results = m_raw_model(image, conf=conf, iou=iou) elif model == "N-Raw": results = n_raw_model(image, conf=conf, iou=iou) elif model == "S-Raw": results = s_raw_model(image, conf=conf, iou=iou) # Draw the bounding boxes resulting_image = results.render() # Convert the resulting image to a PIL image resulting_image = Image.fromarray(resulting_image) # Get the labels labels = results.pandas().xyxy[0]["name"].values # Sort the labels by their x-value first and then by their y-value # print(labels) return [resulting_image] demo = gr.Interface( snap, [gr.Image(source="webcam", tool=None, streaming=True), gr.inputs.Radio(["M-Raw", "S-Raw", "N-Raw"]), gr.Slider(0, 1, value=0.6, label="Classifier Confidence Threshold"), gr.Slider(0, 1, value=0.7, label="IoU Threshold")], ["image"], title="Baybayin Instance Detection" ) if __name__ == "__main__": demo.launch()