import spaces import torch print('torch version:', torch.__version__) import gradio as gr from unsloth import FastLanguageModel max_seq_length = 2048 dtype = None load_in_4bit = True model, tokenizer = FastLanguageModel.from_pretrained( model_name = "ua-l/gemma-2-9b-legal-steps200-uk", # YOUR MODEL YOU USED FOR TRAINING max_seq_length = max_seq_length, dtype = dtype, load_in_4bit = load_in_4bit, ) FastLanguageModel.for_inference(model) def predict(question): inputs = tokenizer( [f'''### Question: {question} ### Answer: '''], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 128) results = tokenizer.batch_decode(outputs, skip_special_tokens=True) return results[0] inputs = gr.Textbox(lines=2, label="Enter a question", value="Як отримати виплати ВПО?") outputs = gr.Markdown(label="Answer") demo = gr.Interface(fn=predict, inputs=inputs, outputs=outputs) demo.launch()