import spaces import torch print('torch version:', torch.__version__) # import torch._dynamo # torch._dynamo.config.suppress_errors = True # torch._dynamo.disable() # torch._dynamo.disallow_in_graph() import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM torch.set_float32_matmul_precision('high') max_seq_length = 2048 tokenizer = AutoTokenizer.from_pretrained("ua-l/gemma-2-9b-legal-steps200-merged-16bit-uk") model = AutoModelForCausalLM.from_pretrained( "ua-l/gemma-2-9b-legal-steps200-merged-16bit-uk", torch_dtype=torch.float16, ).to('cuda') # compiled_model = torch.compile(model, mode="default") print('Model dtype:', model.dtype) @spaces.GPU def predict(question): inputs = tokenizer( [f'''### Question: {question} ### Answer: '''], return_tensors = "pt").to("cuda") outputs = model.generate(**inputs, max_new_tokens = 128) results = tokenizer.batch_decode(outputs, skip_special_tokens=True) return results[0] inputs = gr.Textbox(lines=2, label="Enter a question", value="Як отримати виплати ВПО?") outputs = gr.Textbox(label="Answer") demo = gr.Interface(fn=predict, inputs=inputs, outputs=outputs) demo.launch()